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Construction of half integral weight
Siegel modular forms of Sp(2, R) from
automorphic forms of the compact twist Sp(2)

By Tomoyoshi Ibukiyama*) at Fukuoka

In this paper, we construct automorphic forms of the non trivial double covering

Sp(2, R) of the usual symplectic group Sp(2, R) (matrix size four) from those of its
compact twist Sp(2)=Sp(2, C) n U(4) (U(4): the unitary group of size four). Our main
point is that this construction preserves L functions. As well known, we have
Sp(2)/{£1}=S0(5), and (SO(5), Sp(2, R)) form a dual reductive pair defined by
Howe [9], so such construction is naturally expected. Actually, one could omit Sp(2)
and give a formulation only on SO(5), but we did not do so. For example, we formulate
Hecke theory on Sp(2), and not on SO(5). This is because we have the following
motivation. By Thara [13] or Langlands [20], it has been conjectured that there should
exist some good correspondence between automorphic forms of Sp(n) and Sp(n, R).
When n=1, this is Eichler’s classical theorem. For n =2, some examples and some good
dimensional relations between these forms have been known (cf. [8], [10], [11], [12]).
The only method to prove such conjecture seems to be the trace formula. It has worked
well at least for dimensional relations (loc. cit.). But a more direct correspondence, if
it exists, would be also very interesting. Here, instead of passing from Sp(2) to Sp(2, R),

" . . Tl
we would like to:insert a “middle” term Sp(2, R), and construct the “first half” of the

e — e
mapping from Sp(2) to Sp(2, R). The construction from Sp(2, R) to Sp(2, R) is left as a
work in future, but we would like to point out that all the Hecke theory at finite places
in this paper (e.g. comparison of local Hecke operators) remains valid also for this
case, and the main obstruction for the “last half” is a lack of knowledge how to choose
a correct test function at the archimedean place.

Historically, Shimura [29] has proved the correspondence between half integral
weight automorphic forms of SL(2, R) and integral weight forms. Our results may be
regarded as a genus two version of his correspondence for the compact twist. Our technique
is similar to Yoshida [32] whose origin is in Niwa [22], Shintani [30], Rallis [25],
Oda [23], Kudla [17], and Howe [9]. Rallis [26] developed some local Hecke theory
of the dual reductive pairs under the assumption that the double covering attached to the
quadratic form is trivial. But this assumption is not satisfied in our case.

*) The author was partially supported by SFB 40, Univ. Bonn and Max-Planck-Institut fiir Mathematik.
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Now, we explain our results more explicitly. Let B be a definite quaternion
algebra over Q with discriminant d, O be a maximal order of B. Put

G'={he M,(B); h'h=n(h)1,, n(h) e Q*},
where ~ is the main involution of B. Then, H is a Q-form of
GSp(2)={he M,(H); h*h=n(h)1,, n(h)e R*},

where H is the Hamilton quaternions. Let G, be the adelization of G’, and G, be its
v-component (v= 00). For finite primes p, put 0,=0® Z, and U,=GL,(0,) N G,
Put U=G, [] U,. For each pair of integers (f,f,) such that f, >/, >0, denote by

14
(Ps., 12 Vy..s,) the representation of G, corresponding to the Young diagram

1 -] - lfl|
e

The space M, ., of automorphic forms on G, with weight (f}, f;) belonging to U
is defined by:

M, ={f:Gy—V, ;,; flaxuy=p, , W) f(x) forall ueU and aeG'}

(cf. [5]). Here, p,, ,, is regarded as the representation of G, by G; — G, —» GL(V,, ).
On the other hand, put

A
F={(C §>6Sp(2,2); C=0modd’ and detAslmod4},

where d’ is the least common multiple of d and 4.
We denote by Sym(f) the symmetric tensor representation of degk’ of GL,(C).
For oddk>1, we denote by S(F det2®Sym(k )) the space of automorphic forms

belongmg to I' with weight det2 R Sym (k). (As for the precise definition, see §2.)
On this space, Hecke operators T,(p? p® p°, p?) (px¥d’, a=b<d=c, a+c=b+d) are
acting (see § 3). On the other hand, denote by T(p?, p®, p, p?) the usual Hecke operators
on M, ..

Main Theorem. Assume that f, + f, is even. Then, there exists a C linear mapping

S1—f2+5
o:M; ,,—S(,det 2 ®Sym(f))
such that

G(T(l, 1,p,p)f)=6pT0(1,p,p2,p) O'(f),
and

o(T(, p, p?, P) f)=To(p, P, P*, P*) 0(f)
forallfe M, . andallprimespj d’', wheree,=1, or i, according as p=1mod 4, or 3 mod 4.

k
We define in § 5 L series of elements of S(I', det> ® Sym (k’)). Then, we have

Corollary. Assumptions and notations being as above, we get L(s, f)=L(s, a(f))
up to finitely many bad Euler factors.

91 Journal fiir Mathematik. Band 359



190 Ibukiyama, Half integral weight Siegel modular forms

We shall treat everything adelically, because it allows us an easier treatment on
Hecke theory and is more suitable for the construction by the Weil representation.
In § 1, we review the p-adic double covering of symplectic groups, and extend it to the group
with the square multiplicators. We also define a double covering and the Weil representa-
tion of its adelization. This is a generalization of Gelbart [3] to higher genera. In § 2,
we define the mapping o by the Weil representation, using good test functions at the
infinite place as in Kashiwara and Vergne [16]. The precise definition of half-integral
weight Siegel modular forms and its classical interpretation are also given there. In § 3,

after a short explanation on the Hecke theory, we compare the action of Hecke operators
J1—f2+5

on M, , and S(I',det 2 @®Sym(f;)). This part is essential. In § 5, we shall give
some examples. After this work had been finished, the author had a chance to talk with
Prof. Kudla, and he told me that he has obtained a correspondence between the
representations of general dual reductive pairs under certain assumptions. The connection
with this paper does not seem very clear at present, partly because the theory of
spherical functions for the non-trivial double covering of the symplectic groups is not
known (cf. [19]).

§ 1. Weil representation and double cover

In this section, we summarize some fundamental properties of the double covering
of the symplectic groups with some similitudes and the Weil representation.

1. 1. Let F be any local field and put
Sp(n’ F) = {g € GLG(F) :gJ‘g:J},

0
—1,
of Sp(n, F) has been known (Weil [31], Rao [27], Perrin [24], Lion-Vergne [21]).

1
where J =< + 0"). The explicit 2-cocycle defining the topological double covering

Now, take Q € M, (F) such that Q ='Q and det Q 0. Then, we have an embedding
as in Lions-Vergne (loc. cit.):

4 B)___} (A@l,,,, B®Q

Sp(n,F)a<C D C®0, D®1,,,>E Sp(nm, F).

The Weil representation R, of Sp(n, F) attached to Q is defined by the restriction of
the Weil representation of Sp(nm, F) to Sp(n, F) through this embedding, that is, for
any C-valued L? function ¢ on M, ,(F), R, is given by the following formulae:

a 0 __r® ® 4

Rq((l," f)=x(ﬂ‘—yfﬂ)wm for x="xe M,(F),

Ry =1()™ [ 00 x(tr(»@)) |det QI dy.

Mn,m(F)
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Here, x is a fixed non trivial additive character of F, and y () is a certain 8-th root of unity
defined by Weil [31]. <Note that, in our notation, the character in Weil is x — x (;) )
For any a, b € F, we have

y(ab) y(1)
y(@) y(b)

where (a, b); is the Hilbert symbol on F (Weil, loc. cit.).

=(a, b)g,

It is known that Ry(g,8,)=co(81,&;) Ry(8;) Ry(g,) for some {+1} valued
2-cocycle on Sp(n, F). The cy(g;, g,) can be calculated explicitly for any given g, g,
(cf. [21], [24], [27)):

A B
Forg= ( C D> € Sp(n, F), put r =rank C. Then, there exist matrices P, Q € GL,(F)

*

and 4, € GL,_,(F) such that P'ICQ=(8 ?) and ‘PAQ=(§1 *). Put

detC ... if r=n,
(4.1 ={detPQdetAl... if r<n.
Following [21], [24], [27],
(l)l—rm
(.2) tQ(g)=———(aZ, e

We denote by c, or ¢, the above ¢, or ¢, for the quadratic form Q(x) = x2. Then, we have
1(81) t1(82)>m tQ(gng)
1(8:8) ) 1o(81) to(82)’

and everything in the right hand side can be calculated for given g,, g,. For example,
it is known by Weil that if g, or g, is an ‘upper triangular’ matrix, i.e. of the form

A B
(0 D> € Sp(n, F), then

co(81,82)=1¢1(81,8)" <

1,(8:87)
t(81) 1,(82) )

We can express ¢, more explicitly in this case. Assume that

_f(x Y \ (4 B
wor-{ 1) )

B
D). Then, we have

¢, (g1, 8)=

A
as sets, and define a as in (1. 1) for ( c

1.3) ¢,(81> 82) =(a, det X).

For the sake of simplicity, we assume from now on, that F=Q, or R. To
emphasize its dependence on various places v, we sometimes write Co» lgs V> X etc. as
Co,v €tc. If no confusion is likely, we abbreviate Q and just write c,.
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To develop Hecke theory, we must take slightly larger groups. Put

G: = {g € M2n(ou); gJ‘g: n(g) Js n(g) € (On)z}a

where v is a finite or infinite place. Put & =I?(M, ,(F)) (square integrable functions),
if F=R, and put & ={¢p e L*(M, ,(F)); ¢(—y)=¢(y) forall ye M, . (F)}, if F=Q,.
L is also invariant by the action of R,(g) (g€ Sp(n, F)).

Proposition 1. 4. We can extend R, to the representation of G, by putting:

1.0
(RQ (0" ,121") ¢) (y))=<p(/1"y) [Al;™

for ¢ € &£, where A is taken to be positive, if F=R.

Proof. For n=1, the proof has been given in Gelbart [3]. The general case is
similarly proved, and we omit it here.

Remark. Actually, we can extend R, to G,, where G, is the group of all v-adic
symplectic similitudes. But, it is more convenient to take the double cover of G, because,
in the double cover of G, our important Hecke operator Ty(1,p, p?, p) vanishes
identically.

From now on until the end of this paper, we fix characters x, as follows:
x,(x) =exp(—4niFr(x)), if F=Q,
X (X) =exp(4mix), if F=R,
where Fr(x) is the fractional part of x. Then, [] x,(x,) gives a non-trivial additive

character on the adeles Q, which is trivial on Q. Now, assume that Q € M, (Z,) if
p+2, and that, for p=2, Q is half-integral, that is, the diagonal components belong to
2717, and the other components to Z,. Put L= M, ,(Z,). We define the dual L’ of L by:

L'={yeM,,(Q,); tr(yQ"Y)eZ, forall y'eL}.

Let e be the smallest nonnegative integer among those r such that Lo>p"L’. Put
N,=p° if p#2, and N,=2°"!. Put

A B
1.5) K,= {(C D) €G, nGL,(Z,); C=0modN,, and
if p=2, also detA=1 mod4}.
Proposition 1. 6. Notations and assumptions being as above, K, splits G, . More

precisely, let ¢ be the characteristic function of L. Then, there exists a { 1} valued function
s on K, such that

Ry(k) p=s,(k) @ forall keKk,.
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Proof. 1t is enough to prove that R,(g) ¢=¢, or —¢ for generators of K,.
K, is generated by the following elements:

10 )
1) g_(o a21>7aezp,

1 x .
2) g_<0 1) » X=X€E Mn(Zp)9

0
3) g=<g 'a"‘>’ ae GL,(Z,), and if p=2, also deta=1mod4,

1 0
4) g=<)c 1),x:‘xeMn(Zp),XEOmode.

As for the first three types of generators, it is easy to see that R,(g) =¢. As

1 —
for the fourth, we have g=—J <0 T) J, and R,(g) is equal to R

1 =
Ro(—1) Ry(J) Ry <0 ’;) Ry(J)

up to the sign. But, we get Ry(—1) 9 =0y(1)/y(=1)™), Ry(J) @ =0, 7(1)"™ |det Q|2
where ¢, is the characteristic function of L', and

1 — n
RQ<O T)(ldeth"‘tpl)=v(1)‘""'<p-

On the other hand, y(1)/y((—1)~™) y(1)*™ =y(1)*™, or y(1)*" "™, according as nm
is even, or odd. Because y(1)® =1, our Proposition is proved. q.e.d.

Now, we define an adelic double cover. Take a half-integral non-degenerate
symmetric matrix Q € M,,(Q). Define K, as above for each finite prime p. Prolong the
above function s, on K, to G, by putting 5,(g) =1, or —1 arbitrarily for g c G,,g¢K,
We fix one such prolongation and denote it also by s,. We put 5, (g)=1 for ge G.
Put b,(g,, ;) =¢,(g1> &) 5,(&1) 5,(&>) 5,(8,8,) for v= 0o where ¢, = the above 2-cocycle
co of Sp(n, Q). Then, b,=1on K, x K,. Put G={g e M,,(Q); gJ'g=n(g) J, n(g) e Q*},
and let G, be the adelization of G. Put G; = {g=(g,) € G,; n(g,) € (Q))?* for all places v}.
For g,, g, € G, put

b(gy, g,)=11b,(8: &2)-

It is clear that this is well defined. We define a double cover G} of G; by this cocycle,
that is, G; =G, x {+1} as a set, and the group multiplication is given by:

(81, &) (82, 82)= (gng’ & &, b(g;, gz))-

92 Journal fiir Mathematik. Band 359
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A double cover G} of G/ is defined in the same way by b,. The groups K, are subgroups
of G; by embedding: K,3k — (k,1) e G;. Put

G* ={ge GL,,(Q); gJ'g=n(g) J, n(g) € (Q")*},
and for any ye G*, put
s@)=I1s,(),

which is of course well defined. G* can be regarded as a subgroup of G; by the mapping:
G*3y—(y,5(y)eGy.
Proposition 1. 7. We get G; =G* G} T1K,.

p

Proof. This is obvious by virtue of the usual strong approximation theorem. '
q.e.d.

Put X=M, (Q), X,=M, .(Q,), and X,=M, (Q,). Denote by S(X,) the
Schwartz-Bruhat functions on X,. For a function f=T1/,, f, € S(X,), where f, are the

characteristic functions of M, ,(Z,) for almost all p,vand
g=(g, )G (g=(g,)eGy,e==1),
put
no(8) f=¢ H 5,(8,) Ry, .(8,) 1,
Such functions as above form a dense subset of S(X,), and we can extend 7,(g) to the
action on S(X,) by continuity. We call n,(g) the Weil representation of G;.Let Vbea

vector space over C. Then, we also call the representation 7, ®id on S(X,)® V the
Weil representation.

§ 2. Automorphic forms on the double covering

In this section, we construct some automorphic forms belonging to G; with n=2.

2. 1. First, we define vector valued automorphic forms on G; . Denote the Siegel
upper half space of degree n by: ,={X+iY; X="X, Y="Ye M, (R), Y>0}. We take
a function m(g, Z) on Sp(n, R) x 9, as in Lions-Vergne [21] p. 174 (for our character
X»)- Then

(t,(8) m(g, Z))* =det(CZ+ D)~}
A B
for Ay g=(C D>€ Sp(na R), where tw(g) is as in (1 1) (fOI' Q=1 and F=R) Denote

—~—~—— . . ——~———
by Sp(n, R) the unique double cover in G* of Sp(n, R). For g=(g, ¢) € Sp(n, R), we
put J(g, Z)=(em(g, Z) t,(g))"". Then

- - ~ .
J(&182, Z2)=J(&1,8,2) J(&y, Z) for g;=(g;,8) € Sp(n, R)  (i=1,2),

that is, J is an automorphic factor (cf. Lions-Vergne, loc. cit.). Let (z, V) be a finite
dimensional irreducible representation of GL,(C).
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A B i .
Put K= B 4 € Sp(n, R); A+iB is unitary;.

Denote by K the double cover of K.

Put I'=G* nTIK,.
14

Definition 2. 1. Notations being the same as in § 1, assume that Q € M, (Q) is half-
integral positive definite and m is odd. A V valued function @ on G is called automorphic

form belonging to I with weight det'zﬂ® T, if it satisfies the following conditions:
(C1) d(yg)=®(9) forall yeG*, geG;,
(C2) 2(g)=—-9(® for (1, —-1)=(eqy,
(C3) d(gh)=d(g) forall ke[]K,, g€Gy,
p

(C4 o(gk )=J(k,, i) ™"t(Ci+D) ' d(9)

A B - G
C D),and ge Gy,

(C5) ®((A1,1)g)=d(g) forall (11,1)e G}, >0, geG;.

forall k =(k_,e)eK,, k, =<

The interpretation into the classical language is given as follows: For

A B
= R
g (C D)GSp(n, )

put Z=g(i)=(AZ+ B)(CZ+ D). Put

2.2 f(Z)=(t,(8) m(g, 1)) "™ t(Ci+ D) ®((g, 1)).

Then, for any yeI', we have

(2.3) fGZ)=50) (t, @) m(y, Z2))"" 1(Ci+ D) f(Z).

Conversely, if there is a function f which satisfies (2. 3), we get an automorphic form @
by virtue of Proposition 1.4. The proof is standard as in Gelbert [3], and we omit
it here.

2. 2. To construct automorphic forms by the Weil representation, we need some
good test functions at the archimedean place. If Q is positive definite, such test functions
are known by Kashiwara and Vergne [16]. We quote here the part of that theory we
need. Let (4, ¥;) be an irreducible representation of O(5), where O(5) is the real
orthogonal group of size 5 for a positive definite form. Put

$(4) = {V, valued pluriharmonic polynomial functions P(y) on M, s(R)
such that P(yh)=Ai(h)~"! P(y)}.
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Here, P(y) is called pluriharmonic, if
5  @P
k=1 0Yu0y ik

where y=(y;;). The group GL,(C) acts on $(4) by: P(y)— P(a'y), ae GL,(C).
We denote this representation by 7(4). For the sake of simplicity, we denote the
Young diagram

=0 for i,j=1...5,

(or the heightest weight attached to a certain basis) by a series of integers like (f;, f5,. . ., f,).

Theorem 2. 4 (Kashiwara-Vergne loc. cit.). Notations being as above, t() is irre-
ducible. We have H(1)%0, if and only if A corresponds to (m,, m,;¢), e=(—1)""",
m; 2m, 20, where (m,, m,) is the heighest weight of A|SO(5) and ¢ is the image of
—1€ O(5). Besides, t(A) corresponds to (—m,, —m,).

Theorem 2. 5 (Kashiwara-Vergne loc. cit., Lions-Vergne [21]). For any P(y), put
fo()=P(yR) exp(—2mtr(yQ'y)), where Q is a positive definite symmetric matrix in
M (R) and R'R=Q. Then, we have

(Rg,(8) f) () = (1,,(g) m(g, 1))’ P((Ci+ D) ™' yR)exp (2nitr(ZyQ'y))

for all g=(A B)e Sp(n, R), where Z=g(i).
C D

2.3. Now, we take a special Q for our purpose. Let B be a definite quaternion
algebra over Q with discriminant d. We fix a basis (w;) (i=1...4) over Z of a maximal
order O of B.We identify B with Q* by this basis. On Q° = B@® Q, we define a quadratic
form by N(x)+t* for (x,f)e B®Q, where N(x) is the reduced norm of B. The
symmetric matrix attached to this form is given by:

0= (g (1)) € My(Q), where S=—;— (tr(@@))  Gj=1...9),

and tr is the reduced trace. Q is obviously positive definite half-integral. We also identify
M, (Q) with (B@® Q). For y € M, (Q), which is identified with

t((yl’ t])’ (y2’ tz)) € (BG') 0)2,

we have
tr(y,7,)
N(y)+1? L+ 21 2
yQ'y= B} ,
tr(y,7,)
t1’2+“‘21_£‘ N(y)+13

where ~— is the canonical involution of B. Put

G'={ge M,(B); g'g=n(g)1,, n(g)e Q™}.
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Let G, be the adelization of G’ and G, be the v-component. Let (x, ¥,) be an irreducible
representation of Sp(2) which factors through SO(5)=~Sp(2)/+1. This means that the
corresponding Young diagram (f;, f,) satisfies that f, +f, =even. Put 0,=0 ® Z,, and
U,=GL,(P,) n G,. Put U=G_, [] U,. Then, the space of automorphic forms belonging

to U with weight k is defined b;:

M, . (U)={f:Gy—V,; fahuy=kw)"' f(h) forall aeG’, ueU, heG,}
(cf. Hashimoto [5]). We denote by A the representation of SO (5) corresponding to x.
ht/s +fz / fz) Take $H(4) as in 2.2. Let {P/(y)}

(i=1...dim$H (1)) be a basis of 5(,1) Put f; ,(»)=P,(y) exp(—2ntr(yQ'y)). Let f, be
the characteristic function of M, s(Z,) for each p. Put f,=f , H f,€ S(X)), where
X=M, (Q). We have

t 2
XAa(BA@)OA)z;{(F _:); teQ,, reBA}

as vector spaces over Q,. For he G, and (X,, X,)e X,, (X-=<‘ :‘)), put

X, (W Xk
()= (i-+3s):

This defines an action of G, on X,. It is proved in the same way as in Yoshida [32]
that, for a fixed ge G,, X (n(g)f;) (yp(h)) is convergent and continuous on G,. We

The Young diagram of 4 is

i i

yeX
denote by < , > a (Sp(2)) invariant metric on V,. We regard R* as a subgroup of G, by
0
embedding R*sa— (a ) eG,.
0 a

Definition 2. 6. For any ¢ € M, (U), we define a C valued function on G} by
2,@)= | <KX (r@f)(ypM), o)) dh,
RXG'\G, yeX

where dh is a Haar measure on G,. We put ¢(¢) = 9(g) = (®;(2)) (column vector).

For our special Q of this subsection, N, in (1.2) is equal to the p-part of d’,
where d’ is the least common multiple of d and 4. We put

Iy@d)=G6" nTIK, {(g ﬁ)eSp(Z, Z); C=0modd’, detA=1 mod4}.
p

Theorem 2. 7. Let k be the representation of Sp(2) which corresponds with (f,, f,)
(121,20, f, + f, = even). For any ¢ € M, (U), o(¢) = is an automorphic form belonging

—f2+S5S

to I'y(d") with weight det 2 ®Sym(f,), where Sym(f,) is the symmetric tensor
representation of GL,(C) of degree f,.

Proof. We define an action of G, on fe S(X,) by: (o(h) f) (»)=f(yp(h)). Then,
for any ge G, we get

2.3 (@) p(h) = p(h) n(2).

93 Journal fiir Mathematik. Band 359



198 Ibukiyama, Half integral weight Siegel modular forms

Then (2. 8) can be proved directly for the generators of G;' as in Proposition 1. 3. The
key point is the fact that p(h) Q'p(h)=Q. The assertion for G; follows immediately
from this. Now, we check each condition in Definition 2. 1.

10 1 x a 0
+ i
(C1) G" is generated by (O 121>, (0 1>, (O 'a“)’ and J. For ye G* and
f=TI1f, € S(X,), we have

n() S =5() 1R, ,(v) s, S, =T1 Ry, , (M) ;.

As for the first three generators, it is obvious that

TS M= ),

yeX yeX

by virtue of the product formulae [] [*|,=IT x,(*)=117,(x) =1. As for J, we get
(N f'= [ a(=tr(rQy))ay',
Xa
where y =[] x,. By virtue of (2. 8), we get

p(W)n(y) f = XI (e ) ) x(—tr (yQ'y)) dy'".

By the Poisson summation formula, we get

> @) (e®)=X f(yp®)).

yeX yeX

If we put f'=mn(g)f, we get the assertion.
The conditions (C2), (C3), (C5) are obvious.

(C4) is a direct consequence of Theorem 2.5, noting that k_(i)=i for any

_ﬂ;,g,_ﬁ;f;>is(ﬁ;f;,ﬁ;f2), qed.

k., € K and the contragredient of (

We express now o(9) in the classical language as in (2.2). For Z€ $,, take
A B
g= <0 ‘A") € Sp(2, R) such that det A >0and g(i1)=A'Ai+B'4=Z. Then, n((g, 1)) f

can be easily calculated. Take a double coset decomposition

H
G,=LG6hnU,
i=1
so that the co components (h),=1. We take the Haar measure dh such that
vol (Sp(2) 1 U,)=1. Put I'=h,Uh;* n G’ and L=T] M, s(Z,)= X,. Then, f(Z) at-

tached to tl‘;e Jj-th component of o (¢) as in (2. 2) is givel;l by:
@)= [ < X PiypMh)exp(2nitr(ZyQ'y)), ¢(h)> dh
R*G'\G, yeLp(h)~'~X

il |
=X =< X P()expQ2ritr(ZyQYy)), o(h))-.
i=1

| l'l yeLp(h) 'nX
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For example, if x is trivial, then

H o(h
o) Y exp (2nitr (ZyQ'y)).

i=1 |F|| yeLp(h)~'nX

1i(Z)=

§ 3. Hecke theory

3.1. We explain some general Hecke theory on S(I', det? ® 7). Take
0='0eM,(Q)

as in § 1. Assume that Q is positive definite.

First, we need some lemma. We call a prime p a good prime if p+2 and N,=1,
that is, if K,=GSp(n,Z,)n G, .

Lemma 3. 1.") For a good prime p and any &€ G, , the double coset decomposi-
tion:

K,0K,=K,0K,u K,0K,(1, —1)
is disjoint.

Proof. We can assume that @=(w, 1) and that w is a diagonal matrix whose
diagonal components are given by (p®,...,p" p’',...,p™) with e;+f;=26 and
e,=e,=--=e¢,=f,=--=f,. Under this assumption, it is easy to see that K, n o K,w ™"
is spanned by “upper triangular” and “lower triangular” matrices. Now, let h, k € K, be
elements such that hw=wk. It is sufficient to prove that B,(h, w)=p,(w, k), that is,
c,(h, w)s,(h)=c,(w, k) s,(k). Let f be the characteristic function of M, ,(Z,). Then,
R, ,(h) f=s,(h) f by definition. On the other hand, we have

RQ,p(h) RQ,p(w)f= cp(h! (D) RQ,p(hw)f
= cp(ha (D) cp(w’ k) Sp(k) RQ,p(w)f
So, we should prove that the actions of R, ,(h) on f and R, ,(w)f are same for any

he K, n wK,w™'. We may assume that & is “upper or lower triangular”. When A is
“upper triangular”, the proof is a direct calculation, and we omit it here. Put

1 0
h=<x l)e K,n prw“.

If we denote w by <g ?1)’ then, d~'xae M,(Z,). Put f'(»)=f(ap~®y). Then,

10 1 . .
R, ,(w) f=constant times f'. We have ( X 1)= -J (O T) J. By direct calculation,

n
we get R, (J) f'=fiy,()™™ |det Q|2 | p®" deta|™, where f; is the characteristic function

x -
of p~%aM, ,(Z,), Ry, 0 1>f1=lp(tr(ny‘y)fl(y)=fl, because, for y=p~®ay,,

1) A lemma similar to this one has been proved independently by Hayakawa in classical terminology.



200 Ibukiyama, Half integral weight Siegel modular forms

Yo €M, . (Z,), we have tr(xyQ'y)=tr(p~**axay,Q'yo) =tr(d ' xay,Q',) € Z,, and

1

finally, we get R, , _y S’ =const x f’, where the constant does not depend on y

1
and w. q.e.d.

We define a measure dg on G, by putting

Jo@dz=| (e(g D+o(, —1)dg,
&3

Gy

where ¢ is a function on G;' and dg is a Haar measure on G, such that vol (Kp)=%.
Then, dg is G, invariant. Let y; (i=1,2) be continuous functions on G, such that
¥;(8(1, —1))=—y;(g), one of which is of compact support. Then, the product is
defined by:

W1 * IP2= I '//l(ﬁg_—l) 'pz(g_) dg.
G
By virtue of Lemma 3. 1, for any we G; , we can define a function ¥ (w) by:

{ if geK,wK,(1,0),
0 otherwise,

¥ () (§)={

where { = +1. The action of a double coset K,wK, on a function @ e S(T, det? ®1) is
defined by c(w) ((w) * ®), where c(w) is some normalizing constant which will be
chosen later. It is easy to see that '

((R,0R,]8) @) =c@) 5 P@EE),

i=1

where the summation runs through a set of representatives of the left cosets of

K,oK,=11K,g,.

i=1

For @, define f(Z) as in (2. 2). For the reader’s convenience, we write here how to

A B
calculate the action of the Hecke operators on f(Z). Take g=< c D) € Sp(n, R) such

that g(i)=2Z. We denote (g, 1) € G* also by g. Put f,(Z)=J(g, i)" 1(Ci+ D) ®(gg; ).
u A. B.

Then, by definition, [K,wK,] f=c(w) ¥ f;. Put g;=(g;, {;). Put gi=( C‘ D'>=h,.wk,.
i=1 i i

for some h;, k; € K,. We may take g, in G* n [] K,

q*p



Ibukiyama, Half integral weight Siegel modular forms 201

Theorem 3. 2. Notations and assumptions being as above, we get
[(Z)=s,(0) (m(8g;, Z) t, (&))" s,(h) s, (ki ")
¢, (g ki) Cp(h! w) I1 5,(8) (G} —1 +D))™' f(g:2),

q¥p

where g,=1s;, A€ R, 1>0, s;€ Sp(2, R) and s,-=<léf IB;'>

This theorem will not be used in the rest of this paper, and the proof will be
omitted here. Actually, we can take g, so that it is “upper triangular”, and all the
quantities in the above theorem can be explicitly calculated at least when w is given.
Explicit actions of Hecke operators have been calculated by several mathematicians
independently, e.g. Juravlev [14], [15]%), for general genus, and Hina, Hayakawa, and
the present author for genus two. During the preparation of this paper, the author had
contact with Hina, some of whose results convinced the author that we should take
symplectic similitudes group with only square multiplicators. The author would like to
thank him for this point.

3.2. Now we go back to our special case in § 2. 3. We define the normalizing
factor of the Hecke operators as follows. Take a representation of Sp(2) with f; + f, =even.
Take h, € G, and denote the multiplicator of A, by p® (i.e. h,'hy=p°1,). Take h, so that

Uh,U= 11 h U (disjoint).

s=1
Then, for ¢ € M, (U), we define
Sitfa v

3.3) (T(UhoUy @) (W)=p’ 2 X x(h)) @(hhy).
s=1

On the other hand, take w € G, and denote by p?’ the similitude of w. Take g; € G; so
that

K,(», 1) K,= 11 K,&; (disjoint).
i=1

f1—f2+5
For ®e S(Iy(d),det 2 ®Sym(f,)), we define
o L eltpmte
(3.4 (L(K,0K) ®)(@)=p > T ®@&).

i=1

More explicitly, this action can be described as follows. Put
g-i=(gi7 Cl) =(h9 1) ((D, 1) (k, 1)

for some h, k € K,. Put g7 ' =(g; ", {)). Then, {;=P,(g:, & ") B,(h, ) B,(hw, k). On the
other hand, for fe S(X,), we get

n(@ ) f=Uis, (&) Ry (87 ") f.

%) The author was informed by Prof. Bocherer of these papers after he finished this work. He would like
to express his thanks.
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Denote {;s,(g;) by &(g;). Then, we get
e(8) =5,(8)) 5,(& ") 5,(h) 5,(@) 5,(hw) 5,(he) 5,(K) 5,(8;)

x ¢ (gi & V) ¢, (h, @) ¢ (hw, k) s5,(g7).
Thus,

B.5) (@) =5,(®)c,(8: &) cy(h, ) (g, k1) 5, (B) 5, (k7).

Here, we have some ambiguity on s,(w), because it was arbitrarily chosen in § 1.
From now on, for the sake of simplicity, we put s,(w)=1. When

p* 0 0 O
0 p2 0 O

w, or hy= 0 0 o0 s
0 0 0 p-

we write T,(K,wK,)=T,(p%, p*, p’*, p’*) and T(Uh,U)=T(p*, p, p’*, p’?.
Our aim of this subsection is to prove the following two key theorems.

Theorem 3. 6. Take a prime p such that p¥d'. Take disjoint coset decomposition
as follows:

1 0 0 O
O 1 0 O ®

U, 0 0 p 0 U’,=’EIl Uk, (heG)),
0O 0 0 »p
1 0 0 O
0O p 0 O u

% 0 0 p*2 o Kp=i=1 ko @eG)
0 0 0 p

Let f, be the characteristic function of M, (Z,). Then,

3.7 e, 3 e(2) (R& ) (N =Vp 5 £,(Yoh)™)
i=1 s=1

Jor all Y e M, 5(Q,), where ¢,=1 or |/ —1, according as p=1 or 3 mod 4, respectively.

Theorem 3. 8. We use the same notations as above, but this time, we take the
following double cosets:

0

u=1Uh, K

14
s=1

1
0

Ul,0 5
0

o o v ©

"N O © o

S O O =

S O = O

o " o ©
%)

"N O o ©
L

0
p
0
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Then, we have

(3.9 S e(e) (R,(& ) ) (N =p X £,(Yph) ™).
i=1 s=1

In the rest of this section, we shall give the proof of these theorems. First, we

give &(g;). Put
1 x 0 -1
R(P)={<0 1>, (1 0) SL,(Z); x=0,...,p—1}

1 x\ (py, —1
2 B , > = 2— — —
R(P) {(0 1)’(1’ 0> SLZ(Z)sx 0,...,P 1,y 0,.__’p 1}-

and

Proposition 3. 10. The set of g; in Theorem 3.6 can be chosen to be the set of
following elements of type (1), (2) and (3).

p 0 a b
0 pb 0
6)) 00 » , where 0=a,b,c=p—1, and (Z IZ)EU(g 0)‘Umodp
000 p for some Ue GL, (F,) and feF,,
2
p*0 0 O o
0 p 0O 0
2 »  UeR(p),
0010 00
U
0 00 p 0
p 0 0 pb .
3) 01 b 0 Ue R(p?), 0=b=p—-1, 0=c=p>*-1
) € P ) = =P— ’ =C=P - 1.
0 0poO 00 7
0 0 0 p? 00

If g, is of type (1), then e(g;) = (_Tf) , and if g is of type (2) or (3), then &(g,) = (‘71) :

where (%) is the Legendre symbol.
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Proposition 3. 11. The set of g; in Theorem 3.8 can be chosen to be the set of
following elements of type (1),...,(6).

p20 0 O
o 0 p20 0
0010/
0 00 1
p 0 a b
0 p b c
2 det (¢ b$0modp, 0<a,b,c=p-—1,
0 0 p b ¢
000 p
1 0 a b
a 01 b S
=a, ,C= — 4,
) 0 0 p*0 P
0 0 0 p?
2
p°0 0 O p-1
@ |07 %) 1=ysp-1, verp)
0010/l0ooO - ’ ’
U
000 p/ \0o o
p 0 x py —_
01y z
&) 1=x=p-1, 0=y, zZp—1, Ue R(p),
00 poO 0
U
0 0 0 p2 0
2
p0 0 O st
010
(6) 0= x=p%*—1, Ue R(p?.
0 0 1 0
U
0 0 0 p? 0

For each g; of the above type (1),. .., (6), e(g;) is given by

b2 — -\ (-
. ( ac)’ 1, (_y>, <_)_c>, or 1, respectively.
P P 4
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For Ye M, 5(Q,)=(B,®Q,)* we put Y="(y,, 1,), (¥, 1,)), y;€ B,, 1,€ Q,. We
define 7; (i=1, 2, 3) and D as follows:

T,=N(y)+t}, T,=tr(y,7,)+211,,

(. 12) 5 .
T,=N(y,)+t2, D=4T,T,—T2.

, o . t 2
In other words, if we identify Y with (Y, Y;)€e {(F _:); te Q, reBp} , we get

tr(Y, Y,
(13, I, )= (—det Y, w 1) , —det Y2> , and it is obvious that 7} and D are invariant
by mappings Y — Yp(h) (he G)).

Proposition 3. 13.  For any Y e M, 5(Q,), the left-hand side of (3.7) is given by the
summation of the following quantities:

T, .
pl/f)(;‘), if p|Ty, pID,

T.
(1) fxnxpw%f) if pXTy, p|D,
0, if pAD,
s -1
2 2 b > U Y>,
( ) . UEZR:(p)fp ((0 1

1 10 0 1 1 if T,,T,eZ
2 1> %2 p
3 Pty <<0 p) <—1 0) Y> 8 {0 otherwise
1r-1 1 0\/1 x 1 if T,,TyeZ
2 2 43 p°
*p ,Eof" ((O p) <O 1> Y) % {0 otherwise.

Each quantity labelled (n) (n=1, 2, 3) is the contribution of cosets of type (n) in Proposi-
tion 3. 10.

Proposition 3. 14. For any Y e M, (Z,), the left-hand side of (3.9) is given by the
summation of the following quantities:

M pf,('Y),

p(p—1), if p|D,
2 fp(Y)X{_p, if pAD.

y if Ty, Tyel,
otherwise,

a)n@nx%
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o G ) ) GlzAG Do 3)7)

I\ .
5 o (1 OV 0 1) r)x (ﬁ) iR
) 2/, 0 p/\-1 0 0 otherwise,
2
» T+ xT,+x*T, if T,T,eZ,
. 1 0\/1 x p 4
+p X/, Y )x .
=0 7\\0 p/\0 1 0 otherwise,

p—1 -1 5 4
g P 0\ /px 1 Y 1, if TeZ,
o x§0 L ((0 P) (- 1 0) 0 otherwise,

pz -— 1 —_— l .
2 p 0\ /1 x y 1, if Tez,
e :Eo Ty <(0 p> (0 1) “0  otherwise.

Each quantity labelled (n) (n=1,...,6) is the contribution of cosets of type (n) in
Proposition 3. 11.

Proof of Propositions 3.10 and 3. 11. As we have chosen g; so that it is “upper
triangular”, we can calculate R, (g; H /f, directly from the definition. For example, put

p 0 a b

0 p b c

o T

000 p
10 p 0 0 0 10 (—a-b\ |
010 0 p! 00 01(—b—c>p
““loo,20 |”%lo 0 0/ "loo o o
000 p 0o 0 0 p 00 0 0

Then, g ' =apfy, and we get

(Rp(Y)fp) (Y) =exp (2nip—l(aTl + bTZ + CT3))fp(Y),
(R, (B) R,(1) f,) (Y) =exp (2mip™* T, +bT, +¢Ty)) f,(p™ V) %,

and

(R,(@) R,(B) R, () f,) (Y)=exp (2nip™" (aTy+bT; + cT3)) f(Y).
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By the calculation of 2-cocycles, we have R,(®) R,(f) R,(y)=R,(«f7). Now, we calcu-
late the summation of

Ia, b, c)=(7f) exp (2mip™ (@T, + bT, + cT) £,(¥)

for all g of type (1) in Proposition 3. 10. If Y e M, 5(Z,), then this is zero, so we can
assume that T,e Z, (i=1, 2, 3). We have ac—b?=0modp. If a=0, then b=0 and
c¢= —fmodp. The partial sum of I(a, b, c) over these elements is given by:

(7_3> Ep I/E’ lf p*TSs

p—1 —c
—¢ Imip~1eT)) =
El(p)e"p( iy el )= if plT,.

If a+0, then c=b?a ! modp and f=a modp. Then, the partial sum of I(a, b, ¢) over
these elements is given by:

p—1 p—-1

I=3Y X I(@,b,c)

b=0 a=1

p-1p-1 /_ ., 1 al,\* a(@T,T,—T}
_s s (——)ex <2ni“<——<Tb4~—3) +-__4—1__A)).
b=0 a=1 \ P ! ¢ a7, } 2 4T,

We may regard every element a, b, etc. as an element of F,.If ptT;, then T,b+27'aT,
runs through all elements of F,, and we get

p-1 -T, Da
=z Wf’( » )P(ﬁ)

In this case, we get

=T
wﬁmWnywpm
&,)/p (‘ T3) : if pkD.

p

I=

If p|T;, it is easy to see that

0, if pyT,

Thus, combining above calculations, we get (1) of Proposition 3. 13. The other cases can
be proved by more or less similar routine calculation, and the proof will be omitted here.
q.e.d.
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Now, we must evaluate the right hand side of (3. 7) and (3. 9). First, we calculate
Yp(hy) for Y € M, 5(Q,). Define an injection j of M,(Q,) ® Q, into M,(Q,) by:

t x 0 y
(N ) w—t —y 0
Wz w)')70 0 2z ¢ w
-z 0 x —t
We have Yp(h)~ ' ="(j " (hj(Y,) h;*), i * (hj(Y,) h;')), where
Y=Y, )€ (M,(Q,)®Q,)* and h,e G,=GSp(2, Q,).
For the sake of simplicity, we sometimes write an element

Az«x y), t>€ M,(Q,) ® Q, or j(A)
zZ W

by a vector (x, y, z, w, t).

oS O =
o o O

Lemma 3. 15 (Andrianov [1]). For hy,= , a set of {h,} such that

00
1 0
0 p
000 p

Uho,U= 11 Uh, (disjoint) is given by the following elements:
s=1

0

0

(M

o o o
o o o
- O O QO

o

tr7—1
2 <U g), where 0=a=p—1, and

0

5 e o
(=] (e — ()
o — o o
o o Q (=)

@ U=<_(1) (1)> or (ii) U=<(1) ‘11>, 0<g=<p-1,

1 0 a b
1 b c -
3) , where 0=a,b,c=p—1.
10
0

oS O O
o O
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Lemma 3. 16. When h, is one of the above elements of type (1), (2) (i) (i), or (3),
hyAh7! for A=(x,y, z, w, t) is given respectively as follows:

1) Copy,p 'z, w0,

@) G (—pw,y+aw, 7, ~ X192

s —t), 0=a=p-—1,

w—qix—az—2qt

P
y—cx+(b*—ac)z+aw—2bt
p

(i) (px,y—ax, z, ,t+qX>,- 0<a=p-1, 0=¢q=p-—1,

3) (x+az, ,pz,w—cz,t—bz),

0=a,b,c=p-—1.

Proof. The proof is a direct calculation, and we omit it here.

1 000
p 0
Lemma 3. 17 (Andrianov [1]). For h,= o 20/ a set of {h;} such that
p
000 p

UhyU= 11 Uh, is given by the following elements:

s=1

0
z B
p f 0)

1 , B=U U 1=£f<p—1,
D1 o p 0 (0 0

0 00 p

01 .. 1 ¢
i) U= = <g<p-
where (i) U (_1 0),or (i) U (0 1),O_q_p 1,

p20 0 0

0 p OO\t o
S o u)

0010

00 0 p

. 01 .. 1 ¢
— = <g<p-—
where (i) U (_1 0),07 (i) U <O 1),0_‘1_P 1,

p 0 O pb

015b c iyt
3 (U 0),0§b§p—1,0§c§p2—1,

00poO 0 U

0 0 0 p?

. 0 1 . 19\ o, <
= = _ = —1.
where (i) U (_1 0), or (i) U (0 1), 0=¢q=p
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Lemma 3. 18. When h, is one of the above elements of type (1) (i) (ii), 2 (i) (ii), or
(3) (i) (i), h,Ah; ! for A=(x,y,z, w,t) is given respectively as follows:

(1) (1) (X, y—P—le, Z, W—p—le, t)’ léfép—ly

(i) (x+p ' fz,y+p ' f(—q*x+w—2q1),z,w—p~'fg*z,t—p~' fqz),
1=sfsp—-1, 0=gq=p-1,
@ @) (=pw,py,p'z, —p'x, —1),
(i) (px,py,p~'z,p7 ' (—¢*x+w—2q1),1+qx), 0=g=p—1,

B3 @) (—=pw,p *(y+b*z+cw+2bt), pz, —p~*(x+zc), —t—bz),
0=b=p-—1, 0=c=p?-1,

() (px,p '(—cx—2bgx+y+b*z—2bt),pz,p ' (—g*x—cz+w—2qt), t+qx—bz),
0<bh,q=<p—1, 0= c=p?-1.

Proof. The proof is a direct calculation, and we omit it here.
Now, we give two preliminary remarks to (3. 7) and (3.9).

Lemma 3. 19. The both sides of (3.7) and (3.9) remain unchanged, even if we
replace Y="Y;, Y,) € (M,(Q,) ® Q,)* by '(Y,, ).

Proof. This is obvious for the right hand sides. As for the left hand side, put

0100
1000

I= S Then, /€ K,, as we assumed that ptd’'. The action of the Hecke
0 010

operators does not depend on the choice of the representatives of the left K, cosets,
so we have

T o(6) Ry(e )y = X o) B8, = X o(0g) ¢, (L&) RylD) Rya)
By virtue of (3. 5) we have
e(lg) c,(I, gi ) =c, (I, g7 ") ¢, (&1, Ig; ") c,(g:], Tk™") s,(Ik™") 5, (k) ¢, (h, w)
=c, (I, k™) s,(Tk™) s,(k7") e(gy)
=sp(1) e(g;) =¢(8),
because s,(/)=1 by definition. But for any f' € S(X,), we have

R, f) (Y, Y))="((Ys YD), Yy, V,€Q}. q.e.d.
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Lemma 3. 20. Define T; (i=1,2,3) as in (3.12). If T, ¢ Z, for some i, then the
both sides of (3.7) and (3.9) are zero.

Proof. As we have already written, 7; is invariant by Y — Yp(h) (h€ G,). So,

i

this lemma is obvious for the right-hand side. Now, we shall prove that each quantity
labelled (n) in Proposition 3. 13 or in Proposition 3. 14 is zero, if some 7} is not integral.
This is obvious for (1), (2) in Proposition 3. 13, and (1), (2), (3), (4) in Proposition 3. 14.
Now, we treat (3) in Proposition 3. 13. If 7, ¢ Z,, it is zero. If T; ¢ Z, and T, ¢ Z,, then
Y, e Z: and the quantity is zero. If 7} ¢ Z, and the quantity (3) is not zero, then we have

1 0\/1
T,,Tye Z, and (0 p) <0 T) Ye M,  (Z,) for some x€ Z,. So, Y="U—p~'xV,p~'V)

for some U, Ve Z;. If we identify Z; with

t r
{(F —t>; telZ, reOngz(Zp},

tr(p~tUV
then T,=2""tr(p"' UV)—xT;. So, %e Z,. On the other hand, we have
Ty=det(U—p~'xV)=detU—-2"'xtr(p~' UV)+x*det(p™' V)€ Z,

which is a contradiction. Thus, this case is proved. The proof for (5) in Proposition 3. 14
is completely the same.

Now, we treat (6) in Proposition 3. 14. Assume that it is not zero. Then, we have
Y="—p 'V,pU+xV)and T\ € Z, or Y="(pU+p~'xV,p'V) and T, € Z,, for some
xeZ,and U, Ve Z,f. We can see from this that 7}, T; € Z,. We get

L,=2"'tr(p~'V(pU+xV))

or 27 'tr (pU+p~'xV)p~'V). As tr(V?)= —2det V, we can conclude that T, € Z,.
q.e.d.

Proof of Theorems 3.6 and 3. 8. The proof consists of rather routine elementary .
number theoretical calculations, but is very long. So, we sketch here only the outline
of the proof. For the sake of simplicity, we denote by (L 1) (resp. (R 1)) the left (resp.
right) hand side of (3. 7). Similarly, we denote by (L2) (resp. (R2)) the left (resp. right)
hand side of (3.9).

anaeoesser. io((: 2 ne(( 1))

By Lemma 3. 20, we can assume that T;e Z (i=1, 2, 3) in the following proof. But
M=M,(Z,)® Z,. By virtue of Lemma 3. 19, we may divide the cases as follows:

©) Y, ¢p'M or Y,¢ép'M,

I Y,epM for i=1,2,

() Y,epM, and Y,eM, Y, ¢pM,

(Il) Y,epM, and Y,ep 'M, Y,¢M,

(IV) Y,eM, Y,¢pM, and Y,eM, Y, ¢pM,
V) Y,eM, Y, ¢pM, and Y,ep 'M, Y,¢M,
(V) Yep'M, Y. ¢M, for i=1,2.
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We calculate both sides of (3. 7) and (3. 9) in each case by using Proposition 3. 13,
3.14 and Lemma 3. 16, 3. 18.

Case (0). Both sides are clearly zero, and the theorems are obvious.

Case (I). Every vector in Lemma 3. 16 and 3. 18 belongs to M and we have

RY)=(p+1) (P*+1)p? and R2)=p(p+1) (p?+1).

In this case, we have T;=0modp (i=1, 2, 3). We get

1]

3 1
CH=p*(p+D+p*(p+1D=R1) and (L2)=p°+p(p—1)+p>+p*=R2).
Thus, the theorems are proved in this case.

Case (II). We have T, T,€pZ, and as we have assumed T;€Z, we get

1o 10
DepZ, For Ue R(p), we get (ﬁ 1>UY€ M, 5(Z,) if and only if U=(0 )

(L1)=p%(p <%>+p2+p+1>.

To obtain (R 1), we must treat various subcases. For the sake of simplicity, we
denote vectors (with parameters) of type (1), (2) (i), (2) (ii), or (3) of Lemma 3. 16 by
v;, U,, Uy, OF V5, respectively. By C(v,), we denote the set of parameters in v, such that
v,€Z;, and so on.

So, we get

Subcase (a). Assume that z’'e€ Z,'. Then, v, ¢ Z‘f. We have
C(v,)={a;x'+az’=0modp} and # (C(vy))=1,
w —2qt' —q*x’

C(U’2)={(a, 9; 0=g=p—1, a= p modp} and  # (C(vy)=p,

C(vy)={(a,b, c); b?>z' —=2bt'+y'—cx’'+aw’ —acz' =0 mod p}.
The condition in C(v;) is a quadratic equation of b, and the discriminant is

D@, c)=t*-z'(y —cx'+aw —acz)).

D
For fixed a, c, the number of b (that is, the number of solutions) is given by 1 +< (;’ c)) R

so we get
p-1 D(a, c)))
1 — e s
a,cz=0 ( +< p

=p*+ El (M)

a,c=0 p

(C(Ua))
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where <%) is the Legendre symbol. For a fixed a such that az'+x’'#£0 modp,
D(a, c¢) runs through Z/pZ, and the partial sum of these elements in the second term

is zero. For the unique solution a of az’'+ x'=0 mod p, we get D(a, ¢)=T; mod p. Thus,
we get

T:
(C(vy))=p*+p (—3)
P
and (R1)=(L1).

Subcase (b). Assume that z’ € pZ, and x € Z;. Then, v, € Z; and v, ¢ Z; (for any
parameter). We get

Cy)={@a, q9); 0=a=p—1, ¢*x'+2qt'—w' =0 mod p}.
The discriminant of ¢?x’+2qt'—w’ with respect to ¢ is t'>+x'w =T, modp. So,
T.
# (C(v))=p (1 +<;3)> We get # (C(v;))=p?, and thus (R 1) =(L1).
Subcase (c). Assume that x', z’e€pZ, and t' € Z,. Then, v, € M,
#(C(vy))=#(C(vy))=p and # (C(v;))=p>*

T.
In this case, 7, =t modp, so (—3>= 1, and we get (R1)=(L1).
p

Subcase (d). Assume that x',z,t'epZ, and w'eZ,. Then, v,eM, v, ¢ M,
# (C(vy))=p, and # (C(v;))=p>. In this case, Ty =0 modp.

Subcase (¢). Assume that x',z',t',w' epZ, and y'€Z,. Then, v,e M, v ¢ M,
#(C())=p, #(C(vp)=p? and T,=0modp.

Thus, (3.7) is proved in the Case (II). The equation (3.9) is proved similarly:
(R 2) is obtained by calculating in each case (a)...(e) as above, and we get

T.
(R2)=(L2)=(p>+p?» (1 +;3>>.
We omit the details here.

pt 0
1 UY ¢ L for any Ue R(p), and

1 1 .
(O 2) <0 T) Ye L only for x=0 (if 0=x=p—1). So, we get (L1)=p2 Now, we

calculate (R 1).

Case (I1I). We prove (3.7). We have

Subcase (a). Assume that ¢’ e p“Z;,‘. Then, x’ or z'e p"Z;,‘, because we have
assumed Ty € Z,. If z' € Z, and x' € p~' Z}, then, v,, v,, v; ¢ M and

Cwy)={@, q); ¥y —ax'=t' +qx'= —g*x'—az’' +w' —2qt'=0 mod p}.

101 Journal fiir Mathematik. Band 359
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.. . . ' t
The first two conditions in C(v;) imply a= % modp and ¢= — ¥ modp. Now,
—qg*x'—az’ +w —2qt'=—q(gx' +t)—qt' —az' +w' modp
=t'x""Ygx' +t)—qt' —y'z’x' " +w modp

3
Thus, we get (R1)=p2. If z’ e p~'Z}, then, v, v,, vy ¢ M, and

{ ) ’ t
Cy)= {(a, b, ¢); a= —3267 modp, ¢ E; modp, b = modp, and
¥ —cx'—2bt'+(b*—ac) 2’ +aw'=0 modp} .
If the first three conditions in C(v;) are satisfied, the last condition is automatic, because

T, t'—bZ
y’—c(x’+az')—2bt'+bzz'+aw’sz—?+ = z =0modp.

1

Thus, we get (R1)=p?=(L1).

Subcase (b). Assume that t'€ Z, and z' € p"‘Z;,‘. Then, v, v,, v; ¢ M and

C(vs)={(a,b,c); b=0, x'"+az',w' —cz' e Zp}.

So, #(C(v3))=1 and (R1)=(L1).

Subcase (c). Assume that ', 2’ € Z,, x' € p~'Z}. Then, v, v,, v; ¢ M and

C(vy) ={(a, 9); 4=0, GE% modp, w'=az’ modp}-
T.

But, w' —az’ E;’;EO modp, so # (C(vy))=1.

Subcase (d). Assume that t',z', x’€ Z, and w' € p~'Z}. Then, v;, v}, v3 ¢ M and

# (C(vy))=1.

Subcase (¢). Assume that ¢,z',x',w'eZ, y'e p“Z;. Then, z'epZ,, because
T;€Z,. So, v, € M and v,, v3, v3 ¢ M. Thus, (3.7) is proved in the Case (III). (3.9) is
similarly proved and (R 2)=(L2)=p?+p. We omit the details here.

Case (IV). The proof for this case is quite long. We give some hints for the proof
and omit the details here. Y, satisfies one of the following conditions

@ zeZz),
(b) zepz, xeZ,,
() z,xepZ, tel),
d) x,ztepZ, welZ,
€ x,z,t,wepZ, yelZ,,
as in the proof of the case (II). Y, also satisfies one of the same conditions

@) zZeZ),... etc.
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The proof is divided into subcases, where Y,, Y, satisfy the conditions

(@), @"), ((b), (b)), .., or ((e), (¢")). The proof in the case ((a), (a")) is most complicated.
Here, we sketch the proof of (3. 7) in this case. It is obvious that

% Tl @
p 7)_ s lf p|T37 PID,

LH=1 3/T. .
Lh=1+p+ p’(ﬁ), if pITy, pID,

0, if piD,

% p?, if zt’—z’thx’ixz'.—:—zy'—yz'szw'—z’szmodp,
0, otherwise.

We get v, ¢ M always, and v, € M, if and only if zx'—z’x=0modp. # (C(vy)) and
# (C(vy)) are given as follows:
(i) If zx'—xz' ¢pZ,, then
A

# (C(v)=1 +<;),

and

A
p+(p—1)(;>, if p|D and A¢pZ,

B
# (C(vy))= P+P<;), if p|D and AepZ,
B
—f{=). if pyD,
? (p> g

where A=22T, —z2'T,+2z*T; and B=xT, —xx'T, + x'*T;.

(i) If zx'—xz'epZ, and zt'—tz' ¢ pZ,, then

# (Cvy)=1

and

_{2p—1, if p|D,
#(C("’))_{ p—1, if pD.
(i) If zx'—xz',zt'—tz'epZ, and zw'—z'w ¢ pZ,, then

(C(p)=0

" p+p (5) if p|D
(C(Ua))'_'{p’ P if p|D.

(iv) If zx'—xz',zt'—tz',zw' —wz' € pZ, and zy'—yz' ¢ pZ,, then
# (C(vy)=p,
# (C(vy))=0.
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V) If zx'—xz',zt'—tz',zw'—2'w, 2y’ —yz' € pZ,, then

#(C(vy))=p
#(C(s)=p*+p (%)

In the case (i), if p|D, p¥T;, and pY A, then

and

A
A= TZS(Z' —21 T3—12T2)2 modp and <;_)=(%> .

If p|D, p¥T,, and p|A, then T,=2zz'Tymodp, T, =z 2z'*T, mod p, and
B=(xz'—zx")® Ty modp,

B T. A T,
SO (—1—)—>=(;3) If p|D, p|Tj;, then p|T, and <;>=<;’), and p|A4 implies p|7; and

p|B.
T T,
In the case (ii), if p|D and p|T;, then z2T, =(z¢'—tz')> modp and (j) If p|D
and pYT;, then (zt'—t'z2)?=z’T,—zz2’ T, +2*Ty=T,(z’—2"'T; '2T,)> modp, and
T.
By
p
In the case (iii), we have T,=z"'z'T,—z"2z"?T,, and if p|D and p|T;, then
T, =0 mod p.
In the case (iv), we have D= —(yz'—zy")> modp, so ptD.
In the case (v), we have T,=z"2z?T,modp and T,=2z'z"'T, modp, so p|D
(5)-G)
and [—)=(—).
p p
Combining these data, we get (R1)=(L1) in the case ((a), (a)).
We omit the proof of the other cases.

Case (V) and (VI). The proofs of these cases are also long, but more or less
similar to the above proofs. We omit them here.

Thus, Theorem 3. 6 and 3. 8 are proved.

§ 4. Main Theorem

In this section, we prove our Main Theorem, and define L-functions.

Main Theorem. Let k be the representation of Sp(2) which corresponds to a
Young diagram (f,,f;) with fi 21,20, f, +f, =even. For ¢ € M, (U), define

1—Jf2+5

o(@)=PeS(det 2 @Sym(f), I[4(d))
as in § 2. 3. Assume that T(1,1, p, p) o =A(p) ¢ and
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Then, we have

e, To(1,p, p?,p) D=A(p) @, and T,(p,p,p> p*) P=w(p) P,

where ¢,=1 or —1 according as p=1 or 3 mod 4, respectively.

Proof. It is clear that the right hand sides of (3.7) and (3.9) do not depend on
the choice of {h}. It is well known that we can take {A,} so that

U,hyU,= 11 U,h,= 11 h,U,.

s=1 s=1

Now, for g; such that K,wK,= LI K,g;, assume that
i=1

iM-

1

(& N fo=c X f(rph)7")
s=1

for some constant c¢. Then,

T 0@ = | ,<z n(gg;‘>f(yp(h)),<p(h)> dh

i=1 yeX

R"Gb \G:4 yeX

= ] <z () (z n(é.-")f) (vo(h), ¢(h)> dh

=cY <Z (n(®).f) (yp(hhil)),¢(h)> dh

s=1 R*Go\G/ \yeX

=c¢ | <Z (@) ), Z cp(hhs)> dh.
s=1

RXGHN\G, \yeX
Thus, taking the normalizing constant defined in (3.3) and (3.4) into account, and
1

putting ¢=p2, or p, as in Theorem 3. 6 and 3.8, we get T,(1, p, p?, p) ®=Ai(p) ® and

Ty(p, p, P>, ) =T, (p, p, p, p) T,(1, 1, p?, p*) D= w(p) ®.
q.e.d.

k

In general, take a common eigen-form @ e S(I,(d"), det? ® Sym (k') of all the
Hecke operators Ty (1, p, p2, p) and T(p, p, p?, p*) (ptd’), and denote by A(p) and w(p)
the eigen values. We define L-function of & by:

L(s, ®)=

l—I (1 "l(p)P-s‘i' (pw(p)+p2k'+k—4(1 +p2))p—25_,l(p) plk’+k—2—3s +p4k’+2k—4—4s)—1’
4

where p runs through all primes which do not divide d'.
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On the other hand, put | UgU= [] Uh, (disjoint), where g runs through elements
g9 s=1
of G, with the multiplicator n(g)=n. Let T(n) be the usual Hecke operator acting on
M, (U):
J1tfa v
Tm)e=n * 3 k(h)@(hh),
s=1

where ¢ € M, (U). Let ¢ be a common eigen form of all T'(n): T(n) ¢ = u(n) ¢. Then, it

is standard to define L(s, ¢) by the “denominator” of Y u(n)n~%, that is, it is given by:

n=1

[T (1=(p) ™"+ (w(2)* = p(p") —p/ " 12%) p=2 — p(p) phiT 272730 4 pPRTARTOTE),
pAd

up to finitely many bad Euler factors.
Corollary. Notations and assumptions being the same as above, we get
L(s, )=L(s, o(9))
up to finitely many bad Euler factors.

The meaning of L(s, o(¢)) is explained as follows: Let f(Z) be the “classical”
automorphic form which corresponds to o (¢) as in (2. 2). Let

f(Z)= % a(T) exp (2mite(TZ))

T>0

be the Fourier expansion, where 7T runs through positive symmetric half integral
symmetric matrices, and a(7T) are vectors in C/2*1,

Proposition 4. 1. For any prime ptd' and fixed N € M,(Q), we have

)3 )3 t(M)™ ' a(MN'M) t"
n=0 detM =p"
MeSL(Z)N\M2(Z)
_ a(N)+a,(N) t+a,(N) t>*+a,(N) 13
1 —l(p) t+ (pw(p)+p2k’+k—4(p2 + 1)) t2 _A(p)ka’+k—2t3 +p4k'+2k—4 t4

as vectors in C/**!, where t is variable, T=Sym(f,), and a;(N) is determined auto-
matically from the above relation.

Proof. This has been proved for C-valued Siegel modular forms of half-integral
weight by Juravlev [15]. (His results include the case of general degree.) The present
author also obtained independently this Proposition for degree two, including vector
valued forms. The proof will be omitted here.
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§ 5. Examples

In this section, we give some examples of o(¢). We assume in this section that
d=2. We take representations k; (i=1, 2, 3) which correspond with the Young diagram
©,0), (2,2), or (8,0), respectively. Then, dim M, (U)=1 for i=1,2,3 (cf. [7]). In
these cases, o(@) is given (up to constant) respectively as follows:

n(x)+t* ts+m

F(Z)= Y fi(x,y,t,5)exp |2ritr (Z (%) 2
Py ts+ 2y n(y)+s?
for i=1,2,3, where Z€ H,, and
Ji=1,
412 —n(x)

L= 4ts—t—r@

452 —n(y)
fi=g(x,y)+g(x, »).

Here, g(x,y)=(x);+(x7)3+(x9)5—3((x7); 73 + 33 (x7)i + (x7)] (x7)3), where,
for any xe H, we define x; by x=x, +x,i+x;j+x,k (x;€R), when i’=j%=—1,
ij=—ji=k.

These F; do not vanish identically. F;, and F, are not cusp forms, and L-functions
are given respectively as follows:

L(Fy, 5)=C() Es—1) {5 —2) E(s—3),
L(F,, s)={(s) {(s—T) L(s, dg),

up to Euler two-factors, where 4, is the unique cusp form of weight 8 of £, belonging
to I'y(2). The above assertion for F, is obvious, and the assertion for F, is a consequence
of Ihara’s result in [13]. The form F; is a cusp form by virtue of Andrianov and
Maloletkin [29.
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