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§ 1. Introduction

Several classes of diophantine equations, such as the Thue-Mahler equation
and certain generalisations of the Ramanujan-Nagell equation, can be reduced
to certain linear equations in two S-units. Here S is a finite set of equivalence
classes of valuations on a given algebraic number field K and an S-unit is an
element aeK with the property that the only valuations on K which assume a
value +1 for o belong to equivalence classes from S. In this section we shall
state a general result on the number of solutions of linear equations in two S-
units. Before we can state it, we have to introduce some notions on valuations.
In §2 we shall discuss the consequences of our general result for generali-
sations of the Ramanujan-Nagell equation and in §§ 3-4 we shall deal with the
Thue-Mahler equation.

Let K be an algebraic number field. By a prime on K we shall mean an
equivalence class of non-trivial valuations on K. Usually we shall denote
primes on @ by the letter p, on a given algebraic number field K by v and on
an extension of K by V. The completion of K at the prime v is denoted by K, .
We distinguish between finite primes, containing non-archimedean valuations,
and infinite primes, containing archimedean valuations. Furthermore, an in-
finite prime is called real if K,=R and complex if K,=C. Finally, the set of
primes on K is denoted by M.

Let L be a finite extension of K and let v, V be primes on K, L respectively.
If all valuations in V are continuations of the valuations in v to L we say that V
lies above v. Then L, is a finite extension of K, and we have

Y [Ly:K,J=[L:K] (1)

V0v

(Here Y means that the sum is taken over all VeM, lying above v. [ has a
Viv Ve
similar meaning.) As a consequence, there are at most [L: K] primes on L

lying above v.
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On @Q we have only one infinite prime, p,, which is represented by the
ordinary absolute value. There exists a one-to-one correspondence between
finite primes on @ and the prime numbers. We shall not make a clear
distinction between prime numbers and finite primes and the finite prime
corresponding to the prime number p is also denoted by p. If p is a prime on
@Q we define |.|, to be the absolute value on @ if p=p_, and the ordinary p-
adic valuation if p is a prime number.

Let v be a prime on the algebraic number field K. Then it lies above a
prime p on Q. In v we choose a valuation |.|, such that

o, =[afX VKR for geq. @)
By our choice of the valuations we have the so-called product formula

[T lod,=1 for aeK\{0}. 3)
veMk
As is well-known, there is a one-to-one correspondence between finite
primes and prime ideals on K and similarly to @, we shall not make a clear
distinction between them.
Let S be a finite set of primes on K, containing the infinite primes. An
element o of K is called an S-unit if

lo],=1  for vé¢S. 4)
Our general result is as follows:

Theorem 1. Let K be an algebraic number field of degree m, let A,y be non-zero
elements of K and let S be a finite set of primes on K of cardinality s containing
the infinite primes. Then the equation

Ax4+upuy=1 in S-units x,y (5)

has at most
3 X 7m+ 2s
solutions.

The proof of Theorem 1 is based on an approximation result (cf. §7,
Lemma 8), dealing with the approximation of cube roots of unity by numbers
from a fixed algebraic number field. This approximation result is derived by
applying a modification of a method of Thue and Siegel, in which hyper-
geometric functions are used [20, 25]. Very recently, J. Silverman [23] showed
independently, but by a different method, that (5) has at most C x22° so-
lutions in case that A=pu=1. Here C is some absolute constant.

In 1961, Lewis and Mahler [11] proved that the equation

piY ... pIy D3y p3E=p3Y ... P53 in Xy, ..., X5, NU{0} (6)

has at most

lO r+s
(cl(r+s) lo§g> + et
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solutions, where p,,, ..., p;, are prime numbers of which the smallest is P and
the largest is Q and where c,, ¢, are solute constants. The disadvantage of this
bound is that it depends on p,,, ..., p,. It follows easily from theorem 1 that

the number of solutions of (6) can be estimated from above in terms of r,s,t
only.

Corollary 1. (6) has at most 3 x 720 +s+9+3 solutions.

We mention that in certain special cases, Theorem 1 can be essentially im-
proved. For instance, Gyory [10] proved the following:

let B be an algebraic integer such that BA:=a,, fu:=a, are algebraic
integers. Let S be a finite set of primes on K consisting of all infinite primes (of
which the number equals r) and t finite primes. Suppose the finite primes of S ly
above prime numbers of which the largest equals P. Let € be a real number with
0<eZl. Put

Mizzl_[lailv for i=l’2’ M:=H|B|u‘ (7)
veS vesS
If min;, M;<M"'~* and log M > C, where C is an effectively computable constant
depending on ¢, P, K, t only, then (5) has at most r+ 4t solutions.

Gyory gives an explicit, but very complicated expression for C. The reader
is warned, that Gyory uses valuations ||.|, which are exactly the m-th powers
of our valuations |.|,.

As we already mentioned, §2 will be devoted to a generalisation of the
Ramanujan-Nagell equation. In §§3-4 we shall deal with the Thue-Mahler
equation. In §5 we shall give some properties of height functions and in §§ 6-8
we shall prove Theorem 1.

§2. A generalisation of the Ramanujan-Nagell equation

In his collected works ([19], p.327, question 464), Ramanujan poses the
following question: 2"—7 is a perfect square for the values 3, 4, 5, 7, 15 of n.
Find other values. In 1948, Nagell [17] showed, that other values for n do not
exist. Beukers [1-3] generalised this in the following way: let D be an integer
with D+0 and let p be a prime number which does not divide D. Then the
equation

x24+D=p" in x,neN (8)

has at most five solutions.

We shall give a further generalisation of Beukers’ result. Let K be an
algebraic number field. The ring of integers of K is denoted by Og and the
ideal (i.e. finitely generated Oyx-module) generated by oy, ...,o, is denoted by
{ay, ..., We have the following result:

Theorem 2. Let K be an algebraic number field of degree m with r infinite
primes, let f(X)eO,[X] be a quadratic polynomial of non-zero discriminant and
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let {foy,..., .} be a (possibly empty) set of distinct prime ideals. Then the
equation

fxy =l ple in xeOg, ky, ky, ..., keZ 9)

has at most
3 X 72m+4r+41

solutions.

It follows that for every non-zero rational integer D and for every set of
prime numbers {p,, ..., p,} the equation

x>+ D=pk ... pk (10)

has at most 3 x 7#*¢ solutions. In case that t=1 this is weaker than Beukers’
result, but our bound also has the property that it does not depend on D and
the prime number involved.

We shall now prove Theorem 2 under assumption of Theorem 1. We have

J(X)=p(X —o)(X —a), (11)

where fe0y and where a, & are distinct numbers, being algebraic over K. Put
L=K(a) and let S be the set of primes on L lying above the infinite primes on
K and fq,..., ,. Then

[L:Q]<2m,  #(S)<2(r+1). (12)

There are integral ideals a,a such that a{a),a{&) are integral ideals in L and
Peaa. Solutions of (9) are shortly denoted by x. If x is a solution of (9), then
the ideals a <x—a),a{x—a&) are integral and solely composed of prime ideals
in S. Assume that (9) is solvable and let x, be a fixed solution of (9). Then we
have for every other solution x of (9) that (x —a)/(x,—a), (x —&@)/(x,—a) are S-
units. Moreover, by a straightforward computation,

— =1. (13)

Note that x is completely determined by the pair ((x —o)/(xo—a), (x—a)/(x,
—d)). Hence by (13), (12) and Theorem 1, Eq. (9) has at most

3x 7[L:Q]+2 #(5) < 3 x 72m+4r+ 4t
solutions. [

§3. The Thue-Mahler equation

Let K be an algebraic number field, let {4, ..., £} be a (possibly empty) set of
prime ideals in K and let F be a binary form of degree =3 with coefficients in
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Ok. We shall deal with the generalised Thue-Mahler equation
CF(x,y)y=44 . in x, yeOy, ky, ..., kel. (14)

If (14) is solvable and if t >0 or K is not equal to @ or an imaginary quadratic
field, then it has infinitely many solutions. For if (x, y, k,, ..., k,) is a solution of
(14) then infinitely many other solutions can be found by multiplying x, y with
the same S-unit in O, where S consists of the infinite primes on K and of
Je1s ---» /. It therefore makes sense, to identify solutions of (14) which have the
same ratio x:y. Every point on the projective line IP'(K) can be given by
homogeneous coordinates (x:y), which are determined up to a multiplicative
constant. We call (x:y) a projective solution of (14) if x,y can be chosen such
that x, yeOy and (14) holds for certain rational integers k, ..., k,.

Theorem 3. Let K be an algebraic number field of degree m with r infinite
primes, let {4, ..., .} be a (possibly empty) set of distinct prime ideals, and let
F(X,Y)eO[X, Y] be a binary form of degree n=3 which is divisible by at least
three pairwise linearly independent linear forms in some extension of K. Then (14)
has at most

7n3(m+2r+ 21)

projective solutions.

Corollary 2. Let F(X,Y)eZ[X,Y] be a binary form of degree n=3 which is
divisible by at least three pairwise linearly independent linear forms in some
algebraic number field and let {p,,...,p,} be a (possibly empty) set of distinct
prime numbers. Then the equation

[F(x, v =ph...p%  in x,y,ky,...,k€€Z with (x,y)=1 (15)

has at most
2 % 7n3(2l+ 3)
solutions.

Corollary 2 follows from Theorem 3 by observing that there are exactly
two pairs of rational integers (x,y) with (x,y)=1 corresponding to the same
projective point (x: y)eIlP' (Q).

The upper bounds in Theorem 3 and Corollary 2 have the remarkable
property that they do not depend on the coefficients of F or the prime ideals
J1s o5 i, the prime numbers p,, ..., p, respectively. Already in 1933, Mahler
[12, 13] gave an upper bound for the number of solutions of (15) depending on
F and t only in case that F is irreducible. In 1961, Lewis and Mahler [11]
derived the more explicit bound

cy(@an)f?V"+(cyny*!

in case that F has non-zero discriminant, that F(1,0) F(0,1)%0 and that F has
integral coefficients with absolute values not exceeding a. Here ¢, c,,c; are
absolute constants. For large values of n, the bound of Lewis and Mahler is
better than ours, but it has the disadvantage of being dependent on the
coefficients of F.
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Our Theorem 3 is a more explicit version of a result of Parry [18]. In fact,
he showed the following:

let K be an algebraic number field of discriminant Dy, let F(X, Y)eOg[X, Y]
be a binary form of degree n=3 and non-zero discriminant and let {p,, ..., p,} be
a (possibly empty) set of distinct prime numbers. Call two solutions
¥, kY, k), (X7, Y7 kY, ... k) of the equation

INgo(F(x, V) =p'...p¢  in x,ye0Oy, ky,....kel (16)

associated if X" =¢x', y'=¢y' for some unit ¢ in Ox. Then (16) has at most ¢'*!
pairwise non-associated solutions for which the norm of the ideal {x,y) does not
exceed |Dg|*'?. Here c is a positive constant depending on F and K only.

As a consequence of Theorem 3 we can choose ¢ such that ¢ depends on n
and K only. For the sake of completeness, we mention that in Chap. 6 of [8]
we derived an upper bound for the number of projective solutions of (14)
which is sharper for large values of t than the one derived in Theorem 3,
namely

715((g)m+1)2 2(B)er+0

+6x7
We shall prove Theorem 3 by applying Theorem 1 to a certain equation of S-
units.

It is also possible to derive upper bounds for the number of solutions of the
Thue equation

F(xa y)=y in X, yE@K’ (17)

where ye(O\{0} and F is as in Theorem 3. For every projective point Pe
IP'(K) there are at most n solutions (x, y) of (17) with (x: y)=P. For if (x,, y,),
(x,,y,) are solutions of (17) with (x,:y,)=(x,:y,) then x,=08x,, y,=4dy, for
some de K, hence

P=F(x3,y,)=0"F(x;,y,)=0"7,
i.e. "=1. This implies the following

Corollary 3. (17) has at most n x 7"™*27+29 solutions, where m, r are the degree
and the number of infinite primes of K respectively and where t is the number of
distinct prime ideals dividing {y).

The bound in Corollary 3 depends on n,m,r,t only. Already in 1974,
Choodnovsky [4] claimed that such an upper bound exists for the number of
solutions of (17), but as far as I know, he never published a proof of his claim.

Very recently, Faltings [9] proved the conjecture of Mordell, which states
that if G(X,Y) is a polynomial with algebraic coefficients such that the curve
C:G(X,Y)=0 has genus =2, then C contains at most finitely many points
(x, y) with x, y belonging to the algebraic number field K. As a consequence,
(17) has at most finitely many solutions in x, yeK if F has non-zero discri-
minant and degree n=4.

Now suppose that F is an irreducible binary form of degree n=3 with
coefficients in Z. From Corollary 3 it follows that the equation

F(x,y)=1 in x, yeZ (18)
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has at most n x 73" solutions. For n=23 much better results are known. Delone
[5] and Nagell [16] independently proved that (18) has at most five solutions
if n=3 and F has negative discriminant and the author [7] proved that the
number of solutions of (18) is at most twelve in case that n=3 and F has
positive discriminant. In 1969, Tartakovskii [24] stated without proof that (18)
has at most 235n° solutions if n>4.

We now deal with the Thue equation
F(x,y)=c in x,yeZ with (x,c)=(y,c)=(x,y)=1, y=0, (19)

where F is as in (18) and where ¢ is a non-zero integer. We call two solutions
(g, ¥1) (x5,¥,) of (19) congruent modc if x;y,—x,y,=0(modc). Then the
number of congruence classes of solutions of (19) is at most equal to the
number of congruence classes U(mod c) satisfying

F(U, 1)=0(mod ). (20)

In order to estimate the number of solutions of (19) in a fixed congruence class,
we apply a reduction method of Lagrange (cf. [15], Chap. 18). Let (x,, y,) be a
solution in a given congruence class. For every other solution (x, y) in the same
class, put X =kx—1ly, Y=(—y,x+x,)/c, where k, [ are fixed rational integers
with kx,—ly,=1. Then X, Y are rational integers. Put

GX,Y)=c '"F(xo X+IcY,yo X +kcY).
Since G(1,0)=F(x,, yo)/c=1, G has integral coefficients and
G(X,Y)=c 'F(x,y)=1.

In view of the upper bound for the number of solutions of (18) this proves the
following

Corollary 4. Let v(c) be the number of congruence classes U(modc) with
F(U,1)=0(mod ¢). Then (19) has at most

nx 7" v(c)
solutions.
Very recently, Mahler [14] showed, that this can be improved to 32nv(c) if

lel Z (450n* a®y" =2,

where a is the maximum of the absolute values of the coefficients of F.

§ 4. Proof of Theorem 3

In this section we shall derive Theorem 3 from Theorem 1. The same notations
are used as in §§ 1-3. Thus K is an algebraic number field of degree m with r
infinite primes, F is a binary form of degree n=3 with coefficients in Oy which
is divisible by at least three pairwise linearly independent linear forms in some
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extension of K and {sy,..., £} is a (possibly empty) set of distinct prime
ideals. We have to show, that the number of projective solutions of the
equation

CF(x, )=k ... pk  in x,ye0, ky,...,k,€Z (14)

is at most
7n3(m+ 2r+21)

The first step is to show that it suffices to prove this in case that F(1,0)=1.
Suppose that (14) is solvable. Let (x,, yo,...) be a solution of (14) and put
F(x,,y,)=¢. Let § be a generator of the principal ideal <{x,,y,>" where h is
the class number of K. Then () is solely composed of prime ideals from
{1, ..., £} and since de{x,, ¥, there are «, f0y such that fy,—ax,=4. Put

G(x,y)=F(xox—By, yox—ay), H(x,y)=¢""1G""x,y)

Then G(x,y) has coefficients in Oy and since G(1,0)=e¢, H(x,y) also has.
Moreover, H(1,0)=1. It is easy to check, that the mapping

(x:y)—(e(—ax+By): —yox+x4)

defines an injection of the set of projective solutions of (14) into the set of
projective solutions of the equation

CH(x, p)y=4% .../ in x,ye0O, ky, ..., keL.

(In fact we have a bijection here but since we do not need this, the proof of
this fact is left to the reader). This shows indeed that it suffices to prove
Theorem 3 in case that F(1,0)=1.

From now on we assume that F(1,0)=1, i.e.

F(x,y)=(x—ay)(x—a,)...(x—a,), (21)

where «,, ..., o, are algebraic integers in some extension of K among which are
three distinct numbers, o, a,, a5 say. Put L=K(a,, ®,,2;) and let S be the set
of primes on L which 1y above the infinite primes on K and 4, ..., £,. Then

d:=[L: Q]<mn(n—1)(n—2), si=#E)<nm—1)m-2)r+1). (22)

Put

oy — oy oAy — U3

A= M:

oy —oy oy —oy
and define for every projective solution (x: y) of (14)

K= tab y E6)
x—0,y’ X—0yy

Then X, Y do not depend on the choice of the homogeneous coordinates (x: y).
Moreover, the projective point (x: y) is completely determined by X, Y. Note
that X, Yare S-units in view of (21) and that, by an easy computation,

(23) AX+MY=1.
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Together with Theorem 1 and (22) this implies that the number of projective
solutions of (14) is at most

3 % 7d+ Zs< 3 x 7n(n— 1)(n—2)(m+ 2r+ 2t) < 7n3(m+ 2r+21) [:l

§ 5. Some properties of height functions

Let K be an algebraic number field of degree m and let My be the set of
primes on K. The absolute height of ae K\ {0} is defined by

h(@)= [] max(1,al,). (24)

veMk

It is easy to check that h(x) depends on o but does not depend on K. For let k
=Q(a). If v is a prime on K lying above the prime w on k then, by the
definition of our valuations in § 1,

Ky kwl/[K:k

Hence by (1), if [| denotes the product taken over all ve My lying above w,

vlw

[T max(1,lal,)= [T [T max(1,|ofKekwlik:ia)

we M we My v|lw

= [] max(l,lol,).

veMgk

By the product formula we have for & ne K\ {0},

h(¢/m= 11 max(él,,Inl,) (26)
veMg
and hence
h(@)=h(e"") for aeK\{0}. 27)

It is easy to check that, more generally,
h(a)=h(e)"  for aeK\{0}, neZ. (28)

This implies that roots of unity have absolute height equal to 1. If « is not a
root of unity, then h(a)> 1.
In the sequel we shall use the notations below. Put

s(v)=1/m if v is a real prime,
=2/m if v is a complex prime,

=0 if v is a finite prime.
Then
Y s(v)=1 for sets of primes S containing the infinite primes (29)
veS
and ’
|(x1 + az + LU + arlvérs“) max(lallm |a2|p’ cnny Iarln)

for ay,...,a,eK and veMy. (30)
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Lemma 1. Let 0 be a non-zero algebraic number, not necessarily in K and let
C=1 be a constant. Then the number of ze K\ {0} with

h(@z)=C (31)
is at most
52C3m

Proof. Let N be an integer with N=5 and suppose that a set & exists, which
contains N numbers ze K\ {0} satisfying (31). Let w be a fixed infinite prime on
K. Primes denoted by capitals ¥ or W will always belong to Mg, . Put M

=[] |0l, where || means that the product is taken over all W lying above
Wlw Wlw
w. We shall use frequently that
[Tlody=lal, for aeK, 3 s(W)=s(w). (32)
Wlw Wiw
First of all, we assume that w is complex. Then we may assume that K<€
and that |.|™? can be extended to the ordinary absolute value on C. By (32) we
have for ze %,
lzl=1zI32 =(] [ lzlp)"*=(M~" [T 102],)"?
Wiw Wiw

S(M~'h(@2)" < (C/MY™2.

Hence all elements of % belong to the square in the complex plane with sides
of length 2(C/M)™?, centered around the origin. Divide this square into d?
small squares, each having sides of length 2(C/M)™?/d, where d is the integer
defined by d*<N £(d+ 1) By the box principle, at least one of these squares
contains two distinct elements of &, z,,z, say. Clearly, |z,—z,

<21/2(C/My"'?/d. Together with (32) and d =2 this implies that
l_[ 10(z, —z)lp = M|z, —z,|,, L2 (2/d})'/™ C < 2°™ C(5/N)/™, (33)

Wlw

If w is real, then one can show in a similar way that (33) holds for certain
z,,z,€¥ with z, +z,, by dividing the interval [ —(C/M)",(C/M)"] into N —1
subintervals of equal length. A combination of (33), the right-hand side of (32),
(29) and the product formula on K(6) yields that

1=[110(z,—z)lw- [110(z; —2z,)ly

Wlw Viw
é([ll 22) C(5/N)'™ I;[ (2°% max(1, |0z, |y) max(1,10 z,l,))
Wiw Viw

<2(5/N)"™ Ch(0z,) h(02,) <2 C3(5/N)/™,
hence N <5(2C3?™ This proves Lemma 1. []

§ 6. Preliminaries to the proof of theorem 1

We shall use the same notations as in the preceding sections. Thus K is an
algebraic number field of degree m, S is a finite set of primes on K of
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cardinality s containing the infinite primes and A, u are non-zero elements of K.
We shall consider the equation

Ax4+py=1 in S-units x,y. (5

Let p be a fixed, primitive third root of unity and put L=K(p). We introduce
the following notations:

E=¢(x,»)=Ax—ppy, n=n(xy)=ix—p*puy,

{x,y)=E(x, y)/n(x,y) for x,yeK. (34)

X,y can be expressed in terms of &, # as follows:

2 p— —
/"Lx=p—§ﬂ, ny= 62 d ,
p2—p p:—p
Therefore, in view of (30), (34) and |p*— p|,, =|3|}/* for VeM,,

2_S(V)max(|é|w|’7|V)§max(llx‘v,|ﬂ)"v) (35)
<1317 12 2°M max((Ely, Inly)  for VeM,.

This implies by (26), (29) and the product formula, that

h(Ax/uy)= [] max(Ax]y,luyly) (36)

VeM

<( [T B)~"22 [] max(€ly,lnly)=2h((x, ).

VeMy, VeMy,
In the sequel we shall also use the following notations. ¥ ° is the set of
those (eL for which a solution (x, y) of (5) exists, with Ax/uy not a root unity,

such that {={(x,y). Let T be the set of primes on L lying above the primes
from S and put

A=(T1BW" [T 14 lulV(J,:[T max (|4, [uly))*.

VeT VeT

Since |4 |, <max(|4ly, |ul,)* for VeM,, we have by the product formula that

A= ]_[ max (|Aly, |uly). If (5) is solvable in S-units x, y, then max(|4ly, |ul,)=1 for
V¢T

VéT. Hence it is no restriction to assume that A>1 and we shall do so in the
remainder of this article.

Lemma 2. We have

[T1-21y- [T max(LI)=([] B4 for (ev™° (37

VeT VeT VeT

H |C1_C2|V > A
ver max(1,]{,],) max(l, 1Caly) — 3h(Ly)h(Cy)

and

for CpCzEVOa GG (3Y)
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Proof. Note that £ —n?>= +371/ —3 A u(Ax+ py). Together with (35) this implies
for every solution (x, y) of (5), on putting {={(x, y).

[116°=n°ly- [1 max(&fy, nly)
VeT Ve¢T
([T B3»*2 T 1Auly- T max (23, 1uly)=(T1 Bly) A.

VeT VeT V¢T VeT

Together with the product formula this implies (37).
We now prove (38). Let &,=E(x;, y), mi=n(x;,y,), {;=¢&/n; for i=1,2, where
(x4, 1), (x5,y,) are distinct solutions of (5). Let V¢T. Then

[A(xy y, =Xy )y =1y (1 =y )=y, (1 =py)ly=ly,—yly =1
and
Gy x5 =X yyly =1x,(1 =A%) = x,(1 =4 x )y =[x, —x,|, < L.
Hence
max(|Aly, [uly) X, y, =X, y4ly =1 for V¢T

Therefore, by the product formula,
1_[ [y, =X ¥ily 2 1_[ X1y, =X, yily l—[ max (|4, |uly)
VeT VeMy, Ve¢T

=[] max(lAl,, |uly).

V¢T

Since &, n,—&, 1, =(p*—p) A u(x, y,—x, y,), this implies that
H &, ’72_52’71|V§(I—[ |3|V)1/2 H |2 uly - l_[ max(|Aly, |uly). (39)

VeT VeT VeT Ve¢T

Moreover, by (35) with V¢ T and the fact that x;, y; (i=1,2) are S-units,
[T max(i&ily, Indy)Z (T ] 131,)"2 [T max(ialy, [uly)
Ve¢T

VT V¢T

23712 TT max(Aly, |uly).

Ve¢T
Together with (24), the product formula and (39), this implies that
ICl - Czlv
ver max(1,]¢,ly) max(1,1{,l,)

= l_[ 18 —Caly- ‘I;[T(max(l, 1C4ly) max(1, 1C,0,))/h(E 1) h(C,)

VeT

= l_[ 1Eina—Eamyly- n (max(léllV’Mlll’)max(lgz'iﬁ|n2lV))/h(C1)h(C2)
VeT Ve¢T

2(JT 1B TT 1A sy (TT max(1Aly, 1y )*/3R(E,) h(ES)
Ver VeT VET

=A/3hC)h(C,). O

In the sequel we shall not refer to & 7. In fact, the inequalities (37), (38) will
suffice for most of our arguments.
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Lemma 3. Put
my({)= min (1, max(|1—p'ly,[1=p~"(7Yy)  for VeM,, (eL.
i=0,1,2
Then
[T m(O<8AREK) 2 for Lev°.

VeT

Proof. Let VeT and {e¥® Choose (,e{(,pl, p*(} such that |1—{,|, <
[1—p'Cyly for i=1,2. Then, by (30),
11— p' Coly =max(|1 = p* Loly, 11— Coly)

=max(|p = =Loly, 11 =Loly, [1—p Loly)

227" max(|1—p =y, (1= p") Loly) =27*W3]}/2 max(1,1,ly)
for i=1,2. Therefore,

11— {3ly 227 2M13], max(1, [l 11— Loly- (40)

Now we have either |{,|, <2°"), which implies that 27*" max(1,|{,|,)<1; or
1Coly >25") in which case we have by (30),

2736l =186l 273 1]y, 1L oly max (L5 y, 11— {5 )

=max(L, |1 ={ol,)=11—Coly.
Hence by (40),

11— Loly 227 @3], max(1, |£ofp) min(L, |1 —Coly)- (41)

By a similar argument it is possible to derive inequality (41) with {, replaced

by {5 !, onnotingthat |1 — {5 |, =[Loly  [1—=Loly SIColy 11— p Lol =11—p" L5 My
for i=1,2. Hence,

|1 _C8|V=|a:3 V|1 _C63|V
227 3W3), 13y max(1, |{oly *)min(1,[1—={5 ')

=2-%W3|, max(L, |3 min(1, |1~ 5"],).

Together with (41) and the fact that max(min(a, b), min(qa, c))=min(a, max(b, c))
for real numbers a, b, ¢ this implies that

1 ‘Cglvgzﬁasw”:ﬂv max(l, ‘C(3)|V) min(l,max(|1—-{yl,,|[1-{5 1|V))-
Hence, by our choice of (),
my, ({)£2%®(3|; ! max(1,[Ll,) 31 =y

Together with (37) and (29) this implies that
[T mp©=8(IT 131) =" (IT 131y) AT T max(1,[¢ly)- [T max(1,1¢],)

VeT VeT VeT VeT V¢r

=84n()>. O
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Lemma 4. Let B be a real number with 0<B<1, let =1 be an integer and put
R(B)=(1—B)~! B¥B=1_ Then there exists a set W of cardinality at most
max(l (2B)"")R(B)*~' consisting of tuples (I3, ...,I,) with I[;=20 for j=1,...,q

g

and Z =B with the followmg property: for any set of reals F,,...,F,, A with

e q°
0<F]§1 for j=1,...,q and l_[ F,< A there exists a tuple (I,...,I[,)e# such
that =t

F<A™  for j=1,...,q. (42)

Proof. We assume that g =2 which is clearly no restriction. Note that for 4> 1
any set # will satisfy the statement in the lemma. Hence it is no restriction to
assume that A <1 and we shall do so in the sequel.

q
Let F,,...,F,, A be reals with 0<F;<1 for j=1,...,q, A<l and } F,<A.

j=1

’q’

Then there are non-negative reals ¢; such that

— A%, f; b1, (@3)
Define the integer u by —
(q—1)B/(1—B)<u<(g—1)B/(1-B)+1. (44)
Then u=1. For j=1,...,q define integers g; by
ug/B—1<g;su¢;B. (45)

Then g;=0 and by the right-hand side inequality of (43) and by (44),
q q
Y g;>uB~! (Z qu) —q=ZuB '—q=u—1.
j=1 \j=1

q
Hence Z g;2u. Now there are integers f(j=1,...,q) with 0=f;<g; and Z 5
=u. Therefore by the left-hand side inequality of (43) and (45), since A <1
Fy= A#1< A58 < AT B0,

Hence (42) is satisfied by some tuple (I3, ..., I})) belonging to the set

=i

q
L)\I;=f;B/u, f;,€Z, ;20 for j=1,....q, ) fj=u}.
j=1

We shall now estimate the cardinality of #” from above. Note that #” has
by (44) cardinality at most

(u+q—1)
q—1

(e DBl Bita)

lIA
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Note also that R(B)=T(B/(1 — B)), where T(x)=(1+4x)!**x~*. Hence it suffices
to show, on putting x=B/(1—B), h=q—1,

(h(1+x)+1

! )g%(l+x“)T(x)" for x>0, heN. (46)

The proof of this fact is based on the inequality

¢ £ .
(g) éW for ée]R, gEN with E_gg (47)
It is not difficult to prove (47) by induction on g, on using that the function
(n/(n+1))" decreases monotonically for #>0. For (47) is trivial for g=1 and if
(47) has been proved for g=p(p=1), then, for E=p+1,

¢ )=i(é—1)< £ E=1p
+1/ p+1\ p JTp+1(E—p)P1p?
(& —1)/&)1 & &

S /DY E-p 1yt = =P 7 (It

We shall now prove (46). Note that hx=x>0, that the function (y/(n+1))"*?
increases for #>0 and that the function (1/(n + 1))" decreases for n>0. Together
with (47) these facts imply that

(h(l+x)+l) ()" (h{(1 + %)+ L2+t

[IA

_xhx(l +x)—h(1 +x)

1 (hx+2)hx+1hh

_(h(1+x)+1)h(1+x)+1( hx )hx+1 (hx+1)hx+11+x
"\ h(l+x) hx+1 hx+2 X
<(h(1+x)+1)"“”’“( h(1 + x) )"““)“
=\ h(l+x) h(1+x)+1

hx+1\>+1

'(hx+2) (1457
hx+1

=(Zii;) (I+x"H)si(l+x7). O

Let { be a fixed number in ¥°°. Choose for every prime VeT p,e{l,p, p?}
such that

my({)=min(1,max (11 —py {ly, |1 —py ' {7y

Note that there are at most two primes on L=K(p) lying above each v in S.
Suppose that V, V' are primes on L lying above a given veS. Then [L: K]=2.
If o is the K-automorphism of L mapping p onto p>=p~', then

|y =la(a)ly, for aeL.
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Hence, on noting that { can be written as (Ax—ppy)/(Ax—p? uy) for certain
x, yeK,

1=p - =11—c(@' Oly=11—p~ Yy, M—p ' Yy=11—p'ly.
for i=0, 1,2. Therefore, we may assume that

py-=py,  My()=my(0). (48)

Let B be a real with $<B<1. By Lemmas 3 and 4, there exists a tuple
(I;),s, belonging to a set ¥~ of cardinality at most R(B)*~!, not depending on
{, such that

[Tm(O)<@AKQ) 3  for veS.

Viv

(Here the product is taken over all primes on L lying above v.) For veS, let
n(v) be the number of primes on L lying above v and put I, =TI /n(v) for every
prime V on L lying above v. Then we obtain, in view of (48) and the fact that
my, ()= min(L, |1 —py {ly) for VeT,

min(1, |1 —p, {l,) SBARQ) "} for VeT. (49)

By (48), the tuple (py)y.r can be chosen from a set of cardinality at most 3°
and clearly, the tuple (I3), ., belongs to a set of cardinality at most R(B)*~'.
Moreover, I},20 for VeT and Y I,=B. Thus we arrive at
VeT
Lemma 5. Let B be a real number with $<B<1. Then there exists a set Wy of
cardinality at most 3°R(B)*~! (where R(B)=(1—B)~! BBB-1) consisting of tu-
ples (py)yer,[Y)yer) With py=1 and I,20 for VeT and ) I,=B with the
VeT

following property: for every (e¥° there is a tuple (py)ycr,(Iy)yor)EWo such
that { satisfies (49).

The next step in the proof of Theorem 1 is to apply an approximation
method to systems of inequalities of type (49). The following section will be
devoted to this.

§ 7. Application of the approximation method

In the study of systems of inequalities of type (49) we shall use certain auxiliary
polynomials of which some properties are stated in the lemma below. As in §6,
we put L=K(p), where K is an algebraic number field of degree m and p is a
primitive cube root of unity.

Lemma 6. For every relN there are polynomials A,(X), B,(X), V.(X)eZ[X] of
degree r with the following properties:

A,(X?)~XB,(X?)=(1-X)* ' V(X); (50)
A1 (@) B @+ A4,() B, 1(0) for aeL\{1}; (51)
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14,(@)ly < G12Y/3Y)" max(1, |aly Y,

B, (@)ly < (;(12/3YF" max(1, |aly)  for aeL, VeMy;
14,(02)y GO61/3)) M, B, (o), <96 1/3)),

V0l <EO6V3YFY  for aeL with |1—af, <1, VeM,.

Proof. The polynomials 4,(X)=1+2X, B,(X)=2+X, V,(X)=1+ X satisfy the
lemma for r=1. Therefore we shall restrict ourselves to the case r=2. Put g,
=(3",r!)3" and

A(X)=q, i (r+1/3) (r_1/3) X" B(X)=q, \i (r—1/3> (r+l/3)X

m=0 m m 0 r r—m

(52)

(53)

(54)
In Lemma 8 of [6] we showed that the polynomials G,(X):=A4,(1—X) and
H,(X):=B,(1—X) have rational integral coefficients. Hence A,(X), B,(X)e

Z[X]. Moreover, we showed there, using results from the theory of hyper-
geometric functions, that we have the identity in formal power series

U(X):=A,1-X)—(1-X)'"*B,(1-X)=X*"*' F(X), (55)

o0

1/3
where (1-X)"*=}) (/ )( X)* and where F,(X) is a formal power series

k=0
with rational coefficients. By eliminating (1 — X)*/?® from (55) and from (55) with
r+1 instead of r and by replacing 1 — X by X, we obtain

A,+1(X) B,(X)~A,(X) B, ,(X)=(1-X)**" P,(X) (56)

for some rational function P,(X) which has a Taylor expansion around X =1.
Since the degree of the left-hand side of (56) is at most 2r+1, P.(X) must be a
constant, ¢, say. An easy computation shows that ¢,#+0. This shows (51).

In order to show (50) we put W.(X):=A4,(X*)—XB,(X?), Y=1-X° 1t is
easy to check, by induction on k, that

dk

o &)= ZL,,(X) U(Y) for keNU{0},

where the functions f;,(X) are polynomials with coefficients in Z. Hence

k

W(k) Z 1) U(J)(O

for keNL{0}. Since U®(0)=0 for k=0, 1,...,2r this implies that W*(1)=0 for
k=0,1,...,2r, ie. that the polynomial W,/(X) is divisible by (1 —X)***. This
shows that (50) holds true for some polynomial V,(X) and by Gauss’ lemma,
V,(X) has rational integral coefficients.

In the proof of (52), (53) we shall use the following inequality:

o (7) 1023 (57
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(57) can be proved as follows. Note that r=2 (by the restriction made at the
beginning of the proof) and (3", r!)=3%", where

o(r)= Z [r/31]1< Z r/3i=r/2,

j=1

oo

. 2
ie. 6(r)<i(r—1). Moreover, the sequence {( rr) 4"} decreases. Hence

r=1

0 () =3ern () sxwsr e (V) 4=z Sazyay
<i(12y/3y.

For every polynomial f(X)=b,+b, X +...+b, X“€eZ[X] we put

[ fl:=1bol+1by|+... +1byl-
Then

|f@ly < 1 f1*" max(L, |aly)*  for aeL, VeM,. (58)

In case that V is finite this is almost trivial; in case that V is infinite this
follows from the fact that the valuation |.|}/*") satisfies the triangle inequality
and is equal to the ordinary absolute value on @.

By comparing the coefficients of X" in the identity of power series (1 + X)*"

. (2r T (r+1/3 r—1/3)
_ r+1/3 r—1/3 = . H
(1+X) (1+X) we obtain (r) "EO( m )(r—m ence by
(57),
141=18,1=q, (7 )sta2v/3. (59)
In view of (58) this proves (52).
The inequalities of (53) with A4,, B, follow immediately from (52), on noting

that |a3], <23 if |1 —a, 1. In order to derive the inequality with V, we shall
estimate ||V*| from above, where V*(X)=V,(1—X). For convenience, we put

(;) =0 if meZ, m<O0 or a,meZ, a<m. Then

VXX)=X "1 (4,(1-X)*)~(1-X)B,(1-X)%)

_x-u-ig, (mz’: (r+1/3) (rr-—lrf)(l_x)hl
_ i (r—1/3) (r+1/3)(1 X)3"'+1)

_x-u-lg i (r+1/3) (r—1/3) (IZ (3m)( X)’)

m=0 m r—m j=0
e § ) R CET 0 )



S-units and the Thue-Mahler equation 579

_x--1g, 3'2“ Z (r+1/3) (r—1/3) ((3m)

j=2r+1 Wm=0 m r—m J

_(3(r_;")+1)))(-1)ixf.

This implies by (57) that

VAT (r+1/3) (r—1/3)

j=2r+1m=0 \ M r—-m (r;n)_ (3(r_;n)+l)'
3r+1 r —_
so 2, OO0

<q, (2r) 23 +1<1(961/3y.

r

By (58) this completes the proof of our lemma. []

Let T be the set of primes on L lying above the primes in S, let (py),.; be
a tuple of cube roots of unity and let (I3),., a tuple of non-negative real

numbers with Y I, =B. Here B is a positive real number. We shall consider
VeT
the system of inequalities

min(l,|1—py {|,) @A) ) for VeT (49)
in the variable {e¥ °.

Lemma 7. Assume that 2/3<B<1. Let {,{,,...,{,, , be distinct elements of ¥"°
which are ordered such that h({)<h((,)<...<h((,,,) and which satisfy (49).
Then

1-B

WGz (5

6x83)«33—1)k-1)/(33—2)h(C1)(3B_1)k. (60)

Proof. We shall prove (60) only for k=1. Then the lemma follows easily by
induction on k. Let VeT. First of all, we have by (30),

16, —Caly

_ <25,
max (1, [C,}y) max(L,[,ly) —

V:
By (30) we also

E, |, —Czlv§2s(v) max(|1—p, {ily, [1=py Coly).

Note that min(a, max(b, c))=max(min(a, b), min(a,c)) for a,b,ceR. Together
with (49) this yields

E, <2*Mmax(min(1,|1—py {,ly), min(1,[1—py {,ly))
<2V max(8Ah(,) "%, 8Ah(C) )Y =2V (8 AR(E,) ).
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Therefore, by (38) (cf. Lemma 2) and (29),

A
— < E, <2(8Ah((,)" %),
SR = L ErS264hE)™)

which immediately implies that
1-B

A
h(€,)2

6X88h(zl)38_1' D

The following lemma will be proved by means of an approximation meth-
od. We have to impose a further restriction on B.

2+2B-3B?
Lemma 8. Assume that 5/6 <B<1. Let r, be an integer with r0>;6T,
let k be an integer with (3B—1)**'>3r,+4 and put (6B—5)

_ (rp,+1)B3B-1)+B
fl(B,ro)—33(63_5)r0_(6+6B—9B2)’

_ 3B(r,+1)
S By o) = BB —%)r,— (6 + 6B—9B?)
B+(B-1)3B—1)(3B—1}—1)(3B—2)
GB—_1)*'1—3r,—4 :

e+ 1+(3B—1)((3B—1F—1)[3B-2)
82(B. koro)= (GB—1)*1—3r,—4 '

gl(B’ k, r0)=

Then there are at most k numbers {e¥"° satisfying (49) and

h({)=max((8 A)fx(B. (96 l/g)fz(B,fo), 8 A)gx(B.k.ro)(96 Vg)gz(B.k,ro)). (61)

Proof. We assume that there are at least k+ 1 numbers (e satisfying (49)
and (61), {,{,,...,{, 1 say, ordered such that h({,)Sh((3)<h(C,)...<h()
<h(, 1)=h((,). We shall show that this assumption leads to a contradiction.
Put h,=h({,) for i=1,2. Then

hy2h, 2(84)3>1. (62)

For A=1, f,(B,r,)>0 and f,(B,r,) decreases to 2(3B—1)/3(6B—5) if ry— o0.
Since 5/6 <B <1 the latter expression is larger than 1/3.

In the first step of the proof we shall show that an integer | with [>r,+1
exists such that

(931/3) (BA)Ph3'+1 <h3P-1<(961/3)* 1 (BA)P R+, (63)
To prove this, it suffices to show that

h%ﬂ—l > (96 l/§)r0+ 1(8A)B h:1$r0+4.
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In view of Lemma 7 and the fact that A'~8/(6 x 8%)=(8 4)! ~2/48 >(8A)1‘B/96]/§,
it is even sufficient to show that

((SA)I—B ((3B—1)<—1)(3B—1)/(3B-2)
961/3 )

g (96 ~l/§)r()+ 1 (8 A)B hilir0+4'

—1)k
Xh(13B 1)kt 4

But this is equivalent to h, = (8 4)#1B:kr0 (961/3)2B-kr0) which is true by (61).
Put

Un:CZAn(C:Ii)—Can(C:;) fOr nEINa

where A4,(X), B,(X) are the polynomials from Lemma 6. Note that [>r,+122.
Put r=1if U#0, r=I1—1 otherwise. Then r=r,. From (62) and (28) it follows
that h({7)>1. Hence {3+ 1. Together with (51) this implies that U,+0.
Let T’ be the set of those VeT for which I},>0. For VeT’ we have firstly
that |1 —p, (|, <1 for i=1,2 (cf. (62)) and secondly, by (50), (53), (30) and (49),
U ly=lpy{, Ar(C?)_pV ¢y Br(C?)lV
=|(Psz—1)Ar(Ci)+(1—PV Cl)ZH—l Viipy &)y
<2MG061/3 7Y max(1—py Lly, 11— py G

§(96 l/g)rs(V) max(SAhZ‘ 3’ (8 A)2r+ 1 h1—3(2r+ 1))TV‘
Hence

1_[ |Ur|V§( l_[ (961/§)rs(V)) max((gA)Bh;?aB’(SA)(Zr-l»l)B h1—3B(2r+ l))‘ (64)

VeT' VeT’

For V¢ T’ we have, by (30) and (52),

|Gy = 22" max (1Loly 14Dy, 141y 1By

<(961/3y*" max(1,|{,,)>* * max(L, |¢,],).
Therefore,

[T 1UJyS(IT 06Y/37* )i+ hy.
VET VeT
Together with the product formula, (64) and (29) this implies that
1 <max((9671/3Y (8A)YPhy"* 1 hy =38, (961/3) (8 A) 2+ DB, pir+1-3B2r+ 1) (65)
By the left inequality of (63) we have, since r =1,

961/3) (8 AP K3+ i~ <1. (66)

By the right inequality of (63), by (61), by r,<r, by I<r+1 and by the fact that
the functionsf, (B, x), f,(B, x) are decreasing in x for x>(2+2B—3B*)/B(6B—5)
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we have
(961/§)r(8A)(2r+ 1)B h2 hir-f 1-3B@2r+1)
1

é((96l/§)r(38—1)+r+2(8A)(2r+1)8(33—l)+Bh:1$r+7+(3B—l)(3r+l—:B(Zr+l)))38—1
< ((8A)(2r+l)B(3B—1)+B(96]/§)3Br+3hi—sB(sB_5),+6+53_932)3B_' T

=((8A)f1(8,r)(96 l/g)fz(B,r) hl_ 1)(3B(GB—5)r—(6+63—952))/(38— 1) § 1.
Together with (66) this inequality contradicts (65). Hence the assumption made

at the beginning of the proof of this lemma, i.e. that there are at least k+1
numbers (¥ ° satisfying (49) and (61), must be false. []

§ 8. Proof of Theorem 1

First of all, we shall count the numbers (e¥"® which satisfy a fixed system (49).
We apply Lemma 8 with B=0.846, r,=34, k=10 and Lemma 7 with B=0.846.
When speaking of (49) or of B we implicitly assume that B=0.846.
A straightforward computation shows that
fi(B,ry)=47.111..., f,(B,r,)=46.178 ...,

g,(B,k,ry)=—3964..., g,(B kr,)=30871....

Since f,(B,r,)log8+ f,(B, ro)log(96]/§)<335 and A=1 it follows from Lem-

ma 8 that there are at most ten numbers {e¥° which satisfy a fixed system

i) h(O)ze?3S 4%, 67)
We now count the numbers {e¥ © satisfying a fixed system (49) and

e REh(D)<e®*5 4%, (68)

Suppose that there are ¢t of such numbers, {,,(,,...,(, say, ordered such that
h({)=h(,)... =h(,). Then, by Lemma 7,

Al—B 1/(3B-2) AI—B 1/(3B-2)
( ) e335 A48>< ) h((:t)

6x 88 6 x 88
A1-B\1/(3B-2) (3B-1) Al-B\1/3B-2) ,8 3B-1t-1
> e i
2w ) 2w 7)) @
Together with 4 >1 this implies that
1-B
3351086+ Blog8 (48+ )logA
w - 3B-2 3B-2
1.538"1=3B-1)"1<
8 —log? log6+Blog8 1—B log A
: 35-3 3B—2 T
<328.4+48.29 log A \<328'4§469.2.

=70.7+02logd = 0.7
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Therefore, t<1+1log469.2/log 1.538=15.28..., ie. t<15. We infer that the
total number of (e¥"® which satisfy a fixed system (49) and for which
h()=e®/2 is at most 25.

By Lemma 5, every {e¥° satisfies one of at most

3 R(0.846) ! <35(49/3) 1 <& x 7%

systems (49). Moreover, every solution (x, y) of (5) is completely determined by
{(x,y). Together with (36) and the fact that roots of unity have absolute height
equal to 1, this implies the following lemma, which might have some interest in
itself.

Lemma 9. Let K be an algebraic number field, let A, u be non-zero elements of K
and let S be a finite set of primes on K of cardinality s which contains the infinite
primes. Then the equation

Ax+py=1 in S-units x, y )
has at most
2x7%
solutions with h(L x/u y)=e®.

We shall now give an upper estimate for the number of solutions of (5) with
h(Ax/uy)<e®. Here A, u and also K, S, s have the same meaning as in Lemma 9.
Moreover, K has degree m.

As is well-known, the group of S-units is the direct product of s multiplica-
tive cyclic groups, G,,...,G, say, one of which is finite. Let n be a positive
integer which will be specified later. Then each factor group G,/G! has order at
most n. Hence for every S-unit ¢ there are S-units ¢,¢&” with e=¢"¢"”, where ¢
can be chosen from a set of cardinality at most n®. We infer that for every
solution (x, y) of (5) there are an S-unit z and an element w of K belonging to a
fixed set of cardinality at most n* which does not depend on x,y such that
Ax/uy=wz" Let w be a fixed element of this set and let 6 be a fixed n-th root
of . By Lemma 1, the number of non-zero z in K with h(6z)<e®" is at most
5(2e**™™ Since every solution (x,y) of (5) is completely determined by @ and
z, this implies that (5) has at most

Sns(2e24mym (70)

solutions with h(4x/uy)<e®. By a combination of (70) with n=49 and Lem-
ma 9, we obtain that the total number of solutions of (5) is at most

(5(2e24/49)m +2) 723§ 3 x 7m+ 2s'

References

1. Beukers, F.: The generalised Ramanujan-Nagell equation. Thesis, Leiden 1979

2. Beukers, F.: On the generalized Ramanujan-Nagell equation. 1. Acta Arith. 38, 389-410
(1980/81)

3. Beukers, F.: On the generalized Ramanujan-Nagell equation. II. Acta Arith. 39, 113-123 (1981)

4. Choodnovsky, G.V.: The Gel'fond-Baker method in problems of diophantine approximation.
Coll. Math. Soc. Janos Bolyai 13, 19-30 (1974)



584

10.

11.

12.

15.
16.

17.

18.

20.

21.

22.

23.

24.

25.

. Delone, B.N.: Uber die Darstellung der Zahlen durch die biniren kubischen Formen von

negativer Diskriminante. Math. Z. 31, 1-26 (1930)

. Evertse, J.H.: On the equation a x"—b y"=c. Compositio Math. 47, 289-315 (1982)
. Evertse, J.H.: On the representation of integers by binary cubic forms of positive discriminant.

Invent. Math. 73, 117-138 (1983)

. Evertse, J.H.: Upper bounds for the numbers of solutions of diophantine equations. MC-tract,

Mathematisch Centrum, Amsterdam 1983

. Faltings, G.: Endlichkeitssdtze fiir abelsche Varietdten iiber Zahlkorpern. Invent. Math. 73,

349-366 (1983)

Gyory, K.: On the number of solutions of linear equations in units of an algebraic number
field. Comm. Math. Helv. 54, 583-600 (1979)

Lewis, D.J., Mahler, K.: Representation of integers by binary forms. Acta Arith. 6, 333-363
(1960/61)

Mahler, K.: Zur Approximation algebraischer Zahlen. 1. Uber den groBten Primteiler bindrer
Formen. Math. Ann. 107, 691-730 (1933)

. Mahler, K.: Zur Approximation algebraischer Zahlen. II. Uber die Anzahl der Darstellungen

ganzer Zahlen durch Bindrformen. Math. Ann. 108, 37-55 (1933)

. Mahler, K.: On Thue’s theorem. Austral. Nat. Un. Math. Res. Rep. 24, (1982); Math. Scand. in

press (1984)

Mordell, L.J.: Diophantine equations. London: Academic Press 1969

Nagell, T.: Darstellung ganzer Zahlen durch bindre kubische Formen mit negativer Diskrimi-
nante. Math. Z. 28, 10-29 (1928)

Nagell, T.: The diophantine equation x?+7=2" Norsk Mat. Tidsskr. 30, 62-64 (1948); Ark.
Mat. 4, 185-187 (1960)

Parry, C.J.: The p-adic generalisation of the Thue-Siegel theorem. Acta Math. 83, 1-99 (1950)

. Ramanujan, S.: Collected papers: p.327. Chelsea Publ. Co., New York (1962)

Siegel, C.L.: Die Gleichung ax"—by"=c. Math. Ann. 114, 57-68 (1937); Gesammelte Abhand-
lungen, vol. 2. pp. 8-19. Berlin-Heidelberg-New York: Springer 1966

Silverman, J.H.: Integer points and the rank of Thue elliptic curves. Invent. Math. 66, 395-404
(1982)

Silverman, J.H.: The Thue equation and height functions. In: Bertrand, D., Waldschmidt, M.
eds. Approximations diophantienne et nombres transcendents. Coll. Luminy 1982, pp. 259-270.
Boston-Basel-Stuttgart: Birkhduser 1983

Silverman, J.H.: Quantitative results in diophantine geometry. Preprint, Massachusetts Inst. of
Techn.

Tartakovskii, V.A.: A uniform estimate of the number of representations of unity by a binary
form of degree n=3. Dokl. Akad. Nauk. SSSR 193: (1970) (Russian); Soviet Math. Dokl. 11,
1026-1027 (1970)

Thue, A.: Berechnung aller Losungen gewisser Gleichungen von der Form ax"—by"=f, Vid.
Selsk. Skrifter I. mat-naturv. Kl, Christiania 1918, Nr. 4; Selected Mathematical Papers of
Axel Thue, pp. 565-572. Oslo, Bergen, Tromse (1977)

Oblatum 25-VIII-1983



	
	On equation in S-units and the Thue-Mahler equation.


