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On the Immersion of an Algebraic Ring into a Field.

Yon
A. Malcev in Moskau.

A set M with an operation of composition is called a semigroup if
this operation satisfies the following conditions®):

a) To every two elements @ and b of M corresponds another element
¢ of M, the product of a and b, i.e.

¢ = ab.

b) The operation of composition is associative, i. e. whatever be
three elements a, b, ¢ of M we always have

a(be) = (ab)ec.

c) Both divisions are univoque, i. e. if

az =ay or zb=yb,
then
z=y.

It can be easily proved that every commutative semigroup can
be ,,immersed‘ (eingebettet) into a group?). However, the analogous
question concerning non-commutative semigroups, as far as we know,
remained unsolved.

Prof. A. Suschkewitsch has published a proof?®) that every semigroup
can be immersed into a group. However, we shall construct (in § 2 of
the present paper) a semigroup which can not be immersed into a group;
thus, Professor Suschkewitsch’s result fails to be true.

An analogous problem exists for rings, viz. can every ring without
divisors of zero (Nullteilern) be immersed into a field*)?

1) See e. g. O. Schmidt. The Abstract Theory of Groups (in Russian). Kiev
1916, p. 58.
3) This can be proved in the same way as the theorem is proved that every

commutative ring without divisors of 0 can be immersed into a field ( i. e. conside-

a

ring ,,quotients” 5

Bd. I, S. 47—48.

%) A. Suschkewitsch, Uber die Erweiterung der Semigruppe bis zur ganzen
Gruppe. Commun. Soc. Math. Kharkoff et Inst. Sci. de Math. et Mécan. Univ.
Kharkoff (4) 12 (1935), 81—86 (in Russian).

4) See e. g. v.d. Waerden, op. cit. S. 49.

). See B. L. v. d. Waerden. Moderne Algebra. Berlin 1930,
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It is well known that in the case of commutative rings such immer-
sion is always possible. We shall show that in the general case (of non-
commutative rings) it is not always so; viz. we shall construct (in § 3
of this paper) a ring without divisors of zero, which cannot be immersed
into an algebraic field. In this way a problem mentioned by van der
Waerden finds its solution?).

We also have found the necessary and sufficient conditions for the
possibility of immersion of a semigroup into a group. However these
are too complicated to be included in this paper.

§ 1.
The condition Z.
The following condition is necessary for the possibility of immersion
of a semigroup $ into a group.
Condition Z. Whatever be eight elements 4, B, C,D, X, Y, U, V
of § such that

4X = BY
CX=DY
AU = BV
we always have
CU =DV.
Proof. We have
B—14 = YX—1
D-1C =YX
B-4 =VU

whence D—1C = VU-1, or CU = DV q.e.d.

Hence follows that if a semigroup § does not satisfy the condition Z
then this semigroup can not be immersed into a group. In the next §
we shall construct a semigroup not satisfying the condition Z.

§ 2.
The construction of the ,non-immersible‘ semigroup $.
Consider all possible finite sequences of eight letters @,b, ¢, d, z, y, u, v.
Such sequences we shall call ,,words“. The number of letters contained
in a word shall be called its ,length®.
The words
az and by
(A) ¢z and dy
au and bv

we shall call ,,corresponding®‘.
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Consider now a word «. It may contain one of the combinations
az, by, cz, dy, au, bv (i. e. be of the form ...mn ..., where mn is one
of the enumerated combinations of letters). If we replace this pair of
letters by the corresponding pair taken from the table (A) we shall ob-
tain another word B. We shall say that B is obtained from o by an
elementary transformation. We shall call equivalent with « a word y
which can be obtained from the word « by a finite number of elementary
transformations. We shall write in that case a~y. The following pro-
perties of the equivalence are evident:

l. a~a,

2. If a~p, then f~a,

3. If a~p and B~y then a~y,

4. Two equivalent words have the same length.

By the ,,product” of two words « and B we shall understand the
word «f obtained by writing down first the word « and after it the
word B. We have:

5. If a~f and y ~J then ay ~f0.

Consider now three consecutive letters mnp of a word [...mnyp ...].
Then, if the pair mn admits an elementary transformation then such trans-
formation is impossible for the pair np. And conversely: if we can make
an elementary transformation on np then this is impossible on mn.
In fact we see at once from the table (4) that if #»p admits an elementary
transformation then # must be one of the letters a, b, ¢, d, while if such
transformation is possible on mn then # must be one of the letters
%, y, u, v. Consequently these two cases are mutually exclusive.

Hence we can easily deduce the following two properties of the
equivalence:

6. If «f~ay or fo~y3 then f~y.
7. If «f~yd and the words « and y have the same length then
a=um, f=mn,
y~um, d~ny,
mu~m'n,
where m, n, m’, n’ are letters (i.e. each of the letters m, n, m’, n' de-
notes one of the eight letters a, b, ¢, d, 2, y, u, v). If « or B has its
length equal to 1 then the factor x, resp. », disappears.

The properties 1, 2, 3 together show that all words can be divided
into classes (Aquivalenz-Klassen) of mutually equivalent words. These
classes will be elements of our semigroup §. The product 4 B of two
classes 4 and B shall be defined as the class ¢ containing a word «f
where o belongs to 4 and # belongs to B. The property (5) shows that
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this class C will not depend on the choice of the words « and § in the
classes 4 and B resp.. From the property (6) follows that if
AB = AC or BD =CD
then
B==C.

Therefore we see that these classes constitute a semigroup §. In
what follows we shall call (for the sake of convenience) (x) the class
containing the word «. Then the definition of the classes and of the
composition of classes can be written down as follows:

8. («) = (B) if and only if a~vp.
9. (@) (B) = («p).

By the length of a class 4 we shall understand the length of a
word « belonging to 4. By the property 4. this length does not depend
on the choice of « in 4.

We shall prove now that the semigroup $ can not be immersed into
a group. To this end it is sufficient to prove that § does not satisfy
the condition Z. In fact we have

(@) (z) = (b)(y)

() (=) = (@) (y)

(@) (w) = (B) (v).
Nevertheless (in contradiction with Z) (¢) (w) & (d) (v) because no ele-
mentary transformations can be effected on the word cu and therefore
this word is equivalent to no other word ozcept itself.

We have proved thus that the semigroup $ does not satisfy the
condition Z, and therefore it cannot be immersed into a group, q.e.d..

§3.
The construction of a non-immersible ring.
Consider the ring R of all linear forms
2 kX,
where X, are the elements of the semigroup $ constructed in the preceding §
and %, are rational nurbers only a finite number of which is different from zero.
The sum and product of two such forms are defined according to the
ordinary rules of addition and multiplication®), i. e.
2k X+ 2LX, = X (ki+ l) X;
kX 2LX, = (5) kil X, X3

we shall prove that this ring R has no divisors of 0 (Nullgeiler).

.5 R can be defined as a hypercomplex system of an infinite rank with the
Semigroup $ ss basis. See e. g. v.d. Waerden, Bd. II, S. 149.
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To this end we shall prove first the following property of the semi-

group $.
Lemma. Let X,, X,, X;, Y,, Y,, Y, be elements of §. If
XY, =X,Y,
X ¥ =X, ¥,
and if the elements X,, X;, X; have the same length then either ¥, = ¥,
or Y, =17,.
Proof. The relation
X, Y, =X ¥,

implies, by the property 7.,
X=X Y=Y
X,=X"-(m') Y,=(@)Y
(mn) = (m'%)
where one or both of the factors X', ¥’ can disappear. In the same way
the relation ;
X, Y, =X¥,
implies
X, = X'-(m) Yy=n)Y
X, = X"-(p) Y,=() Y
(mn') = (pq)-
Here m, n, m/, n', p, q, denote words of length 1. If now ¥, = Y, and
Y, &= Y,, then # % »’ and »’' = ¢, while
(m'n) = (mn)
(mn') = (pg).
We shall prove that this is impossible.

In fact the inspection of the table (4) will show us that ' must
be either # or y because no other letter is found twice as a second
component in this table. In the same way m can be only a or b. There-
fore mn' must be az or by. Suppose for instance that mn’ = az, then
mn = aw and m'n’ = bv. We thus arrive at a contradiction because n’
had to be z or y. The supposition mn’ = by will similarly lead us to
a contradiction. Thus either » = n’ or »’ = p. In the first case we have
Y, =Y, in the second ¥, =Y,, q. e. d..

’ We can easily prove now that the ring R has no divisors of 0. In
fact let .
(B) 2k X XY= ({Z.') kX, Y;=0.

¥

The longest terms of the sum X %,/; X, Y; have the sum O because
)

they cannot vanish in combination with the shorter terms. But these



Algebraic Rings and Fields. 691

longest terms are obtained by multiplying the longest terms of Xk, X,
with the longest terms of X1, Y;. Therefore if we remove from Xk X,
and X; Y, all but their longest terms the relation (B) remains true.
From what was just said it is evident that we can suppose that all X,'s
(as well as all Y,’s) are of the same length.
So let
2hXe- ZLY, =Sk X, Y; =0
,7)

and let all X,’s be different and of the same length; in the same
way let all Y;’s be different and of the same length; besides let
k= 0.

In order that k,1, X, Y, (3 0) should combine with one or more terms
to give O it is necessary that there exist such 7 and 7 (¢ = 1, j == 1)
that k; = 0, }; = 0 and that

XY, =X, ¥;.

But then the term k,1;X, Y, is different from zero; in order that
this term could vanish in combination with other terms of the sum it is
necessary that there exist such ¢’ and j' (5 == j’) that

Xl YJ' = X,' Yj'.
But then by our lemma either ¥, = Y, or ¥; = ¥ which is impossible:

Thus the ring R has no divisors of 0. Nevertheless R cannot be
immersed into a field because § would then be immersed into a group
(viz. the multiplicative group of the field), which is impossible as we
have seen.

Mathematical Institute, Moscow University, April 12, 1936.

(Eingegangen am 20. 6. 1936.)
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