

Werk

Titel: Über den Funktionenkörper der Normfläche einer zentral einfachen Algebra.

Autor: Heuser, Ansgar

Jahr: 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?243919689_0301|log10

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Über den Funktionenkörper der Normfläche einer zentral einfachen Algebra*)

Von Ansgar Heuser in Regensburg

In seiner Arbeit [2] konstruiert S. Amitsur zu gegebener zentral einfacher Algebra $\mathfrak A$ einen "generischen Zerfällungskörper" (s. u.); dieser läßt sich als der Körper der rationalen Funktionen auf dem $\mathfrak A$ entsprechenden "Severi-Brauer-Schema" ansehen (vgl. [6], chap. X, § 6). Einer solchen Algebra $\mathfrak A$ ist daneben ein weiterer Funktionenkörper in natürlicher Weise zugeordnet, nämlich der Körper k(X) der rationalen Funktionen auf der Normhyperfläche X von $\mathfrak A$. Ziel dieser Note ist der Beweis zweier Sätze über diesen Körper:

Theorem I. Der Körper k(X) ist stets ein Zerfällungskörper von \mathfrak{A} .

Theorem II. Ist $\mathfrak A$ ein verschränktes Produkt, so ist k(X) auch generischer Zerfällungskörner von $\mathfrak A$.

Im folgenden bezeichne k stets einen festen (unendlichen) Körper k, Br(k) seine Brauergruppe.

- 1. **Definition 1** (Amitsur). Es sei ξ ein Element von Br(k): dann heißt ein Körper K|k generischer Zerfällungskörper von ξ , wenn gilt:
 - i) K zerfällt ξ .
- ii) Zu jedem Zerfällungskörper L|k von ξ gibt es eine Stelle $\varphi: K \to L \cup \infty$ über k (Sprechweise: "L ist k-Spezialisierung von K").

Die Existenz solcher Körper wurde in [2] gezeigt, vgl. auch [5].

Definition 2. Zwei Körper K|k und K'|k heißen äquivalent über k, wenn es Stellen $\varphi: K \to K' \cup \infty$ und $\varphi': K' \to K \cup \infty$ über k gibt.

Satz 1 (Amitsur). Mit einem Zerfällungskörper K|k von ξ ist auch jede k-Spezialisierung L|k ein solcher ([2]: Theorem 9. 1).

Bemerkung. Ist also K|k generischer Zerfällungskörper zu einem ξ , so gilt dies auch für jeden zu K im obigen Sinne äquivalenten Körper K'|k.

^{*)} Die Arbeit gibt einen Teil der Dissertation des Autors wieder. Universität Regensburg 1977.

2. Rangpolynom und reduzierte Norm (vgl. etwa [1]: chap. VIII; [3]: Kap. IV, § 7). Es sei $\mathfrak A$ eine zentral einfache k-Algebra der Dimension $m=n^2,\ e_1,\ldots,e_m$ eine k-Basis von $\mathfrak A$. T_1,\ldots,T_m seien Unbestimmte über k: dann heißt das Minimalpolynom $R(Z)\in k(T_1,\ldots,T_m)$ [Z] des "allgemeinen Elements"

$$z = T_1 e_1 + \cdots + T_m e_m \in \mathfrak{A} \otimes k(T_1, \ldots, T_m)$$

über $k(T) := k(T_1, ..., T_m)$ das Rangpolynom von \mathfrak{A} . Für dieses gilt:

- 1) $R(Z; T) = \det \left(Z \cdot \operatorname{id} \sum_{i=1}^{m} T_i \cdot \varrho(e_i) \right) \in k[Z; T]$ mit einer k-Darstellung $\varrho \colon \mathfrak{A} \to M_n(\bar{k})$ ($\bar{k}|k$ algebraischer Abschluß).
- 2) R ist eine absolut irreduzible Form (in den Variablen Z; T_1, \ldots, T_m) über k vom Grade n, die in Z normiert ist.
 - 3) R ist als Polynom in Z über k(T) separabel.

Bezeichnet Nred die reduzierte Norm von $\mathfrak{A} \otimes k(Z;T)$ über k(Z;T), folgt demnach

$$R(Z; T) = \text{Nred}(Z \cdot 1_{91} - z)$$

und

$$(-1)^n R(0; T) = \text{Nred}(z) = : P(T_1, \ldots, T_m)$$

mit einer absolut irreduziblen Form P vom Grade n über k, der Normform der Algebra \mathfrak{A} . Diese definiert eine Hyperfläche X im projektiven Raum \mathbf{P}_k^{m-1} , die Normfläche von \mathfrak{A} .

Genau dann ist ein Element $\alpha \neq 0$ einer zentral einfachen Algebra Nullteiler, wenn seine reduzierte Norm Nred(α) verschwindet, also:

Bemerkung. In einer Erweiterung L|k besitzt X genau dann L-rationale Punkte, wenn die Algebra $\mathfrak{A} \otimes L$ Nullteiler enthält.

Die Formen R und P sind durch $\mathfrak A$ bis auf nichtsinguläre lineare Transformation der Variablen T_i eindeutig bestimmt, die Körper

$$F(\mathfrak{A}) := {k(T) [Z] / (R(Z))}$$
 und $N(\mathfrak{A}) := \operatorname{Quot} {k[T] / (P)}$

also bis auf k-Isomorphie.

Nach Konstruktion gilt:

- 1) $F(\mathfrak{A}) \cong k(T)$ $(z) \subset \mathfrak{A} \otimes k(T)$.
- 2) Der Funktionenkörper k(X) von X ist der Unterkörper der homogenen Funktionen vom Grade 0 in $N(\mathfrak{A})$.

Bemerkung. Der Körper $F(\mathfrak{A})$ ist ein Zerfällungskörper von \mathfrak{A} .

Beweis. [k(T)(z):k(T)] = n; also ist $F(\mathfrak{A})$ über k(T) isomorph zu einem maximalen kommutativen Unterring von $\mathfrak{A} \otimes k(T)$, der zugleich Körper, demnach Zerfällungskörper von $\mathfrak{A} \otimes k(T)$ ist.

Die in diesem Abschnitt eingeführten Bezeichnungen werden im folgenden beibehalten.

3. Die Körper $F(\mathfrak{A})$ und $N(\mathfrak{A})$ stehen in einfacher Beziehung zueinander:

Satz 2. $F(\mathfrak{A})$ ist (über k) isomorph zu einer einfach transzendenten Erweiterung von $N(\mathfrak{A})$.

Beweis. $F(\mathfrak{A}) \cong k(T_1, \ldots, T_m; z)$ mit der Relation R(z; T) = 0. Man wähle $\lambda_1, \ldots, \lambda_m \in k$ mit

$$1_{\mathfrak{A}} = \sum_{i=1}^{m} \lambda_i e_i$$

und setze $y_i := \lambda_i z - T_i$, $1 \le i \le m$, und damit $k(T; z) = k(y_1, \ldots, y_m)(z)$. Es folgt

Nred
$$\left(Z \cdot id - \sum_{i=1}^{m} T_i e_i\right) = Nred \left(\sum_{i=1}^{m} (\lambda_i Z - T_i) e_i\right)$$
,

mit anderen Worten

$$R(Z; T) = P(\lambda_1 Z - T_1, \ldots, \lambda_m Z - T_m).$$

Spezialisiert man Z zu z:

$$R(z; T) = 0 = P(y_1, ..., y_m).$$

Also tr $\deg_k k(y_1, \ldots, y_m) \le m-1$, andererseits tr $\deg_k k(y_1, \ldots, y_m)(z) = m$, folglich:

- 1) z transzendent über $k(y_1, \ldots, y_m)$,
- 2) $\operatorname{tr} \operatorname{deg}_{k} k(y_{1}, \ldots, y_{m}) = m-1$; d. h.

$$k(y_1,\ldots,y_m) \cong \operatorname{Quot}^{k[Y_1,\ldots,Y_m]}/(P(Y_1,\ldots,Y_m)) \cong N(\mathfrak{A}).$$

Daraus erhält man schon

Theorem I. Der Funktionenkörper der Normfläche einer zentral einfachen Algebra $\mathfrak A$ ist ein Zerfällungskörper von $\mathfrak A$.

Beweis. Der Körper $N(\mathfrak{A})$ ist einfach transzendente Erweiterung seines Unterkörpers k(X), also zu diesem im Sinne von Definition 2 äquivalent; $N(\mathfrak{A})$ seinerseits ist zu $F(\mathfrak{A})$ nach eben bewiesenem Satz äquivalent — dieser Körper jedoch ist, wie in Abschnitt 2. bemerkt, ein Zerfällungskörper von \mathfrak{A} . Aus Satz 1 folgt die Behauptung.

- **4.** Wann ist nun k(X) darüberhinaus generischer Zerfällungskörper? Der nächste Satz liefert zunächst eine Umformulierung:
- **Satz 3.** $\mathfrak A$ sei zentral einfache k-Algebra der Dimension n^2 , X ihre Normhyperfläche; dann sind äquivalent:
 - i) k(X) ist generischer Zerfällungskörper von \mathfrak{A} .
- ii) Es gibt einen generischen Zerfällungskörper K|k von $\mathfrak A$ mit der Eigenschaft: K enthält einen Unterkörper K'|k, so daß K|K' eine einfache Erweiterung vom Grade n ist.

Beweis. i) \Rightarrow ii): Der zu k(X) äquivalente Körper $F(\mathfrak{A})$ hat diese Eigenschaft:

$$F(\mathfrak{A}) = k(T_1, \ldots, T_m)(z).$$

ii) \Rightarrow i): Sei K|k generischer Zerfällungskörper von \mathfrak{A} , $K = K'(\alpha)$ mit einem Unterkörper K'|k von K, α algebraisch vom Grade n über K'. Man betrachte die Algebra

$$\mathfrak{A}' := \mathfrak{A} \otimes K'$$
;

als Zerfällungskörper vom Grade n über K' läßt sich K (über K') in \mathfrak{A}' einbetten, insbesondere gibt es eine Darstellung

$$\alpha = \sum_{i=1}^{m} \alpha_i e_i$$
 mit $\alpha_1, \ldots, \alpha_m \in K'$.

 α ist Nullstelle seines charakteristischen Polynoms, das durch Spezialisierung der Variablen T_i auf α_i aus dem Rangpolynom R(Z; T) entsteht:

$$R(\alpha; \alpha_1, \ldots, \alpha_m) = 0.$$

Da α über K' den Grad n hat, ist $R(Z; \alpha_1, \ldots, \alpha_m) \in K'[Z]$ bereits das Minimalpolynom von α über K'.

Es gibt nun zunächst eine Stelle $\tilde{\varphi}: k(T_1, \ldots, T_m) \to k(\alpha_1, \ldots, \alpha_m) \cup \infty$ über k mit $\tilde{\varphi}(T_i) = \alpha_i$ $(1 \le i \le m)$; diese läßt sich auf die Erweiterung $F(\mathfrak{A}) = k(T)$ (z) fortsetzen zu einer Stelle

$$\varphi: F(\mathfrak{A}) \to \Omega \cup \infty$$

in den algebraischen Abschluß Ω von $k(\alpha_1, \ldots, \alpha_m)$.

 $z \in F(\mathfrak{A})$ ist ganz über $k[T_1, \ldots, T_m]$, insbesondere ganz über dem Bewertungsring von $\tilde{\varphi}$, liegt demnach im Bewertungsring von φ : sei

$$\beta := \varphi(z) \in \Omega$$
.

 β genügt der Gleichung

$$\varphi(R(z;T)) = 0 = R(\beta, \alpha_1, \ldots, \alpha_m),$$

erzeugt also über $k(\alpha_1, \ldots, \alpha_m)$ einen Körper vom Grade n; da andererseits der Restklassenkörper zu φ ganz allgemein über $k(\alpha_1, \ldots, \alpha_m)$ höchstens den Grad $[F(\mathfrak{A}): k(T)] = n$ hat, muß der Körper $k(\alpha_1, \ldots, \alpha_m)$ (β) bereits der volle Restklassenkörper sein:

$$\varphi: F(\mathfrak{A}) \to k(\alpha_1, \ldots, \alpha_m) (\beta) \cup \infty$$
.

 α und β sind Nullstellen des gleichen irreduziblen Polynoms über $k(\alpha_1, \ldots, \alpha_m)$; der Restklassenkörper zu φ läßt sich also (über k) in K einbetten und damit die Stelle φ sich als Stelle

$$\varphi: F(\mathfrak{A}) \to K \cup \infty$$

ansehen. Damit ist der Körper $F(\mathfrak{A})$ (und also auch k(X)) als zu K äquivalent nachgewiesen, folglich ebenfalls generischer Zerfällungskörper von \mathfrak{A} .

Korollar. Ist der Normflächenkörper der Algebra $\mathfrak A$ generischer Zerfällungskörper von $\mathfrak A$, so auch der Normflächenkörper jeder Algebra $\mathfrak A \otimes M_r(k)$, $r \in \mathbb N$.

Beweis. Nach Voraussetzung ist der Körper $F(\mathfrak{A})$ generischer Zerfällungskörper, $F(\mathfrak{A}) = k(T_1, \ldots, T_m)(z)$.

Man bilde den Körper $K:=F(\mathfrak{A})$ (S) mit einer Unbestimmten S — dieser ist dann immer noch generischer Zerfällungskörper zu \mathfrak{A} .

K enthält $K' := k(T_1, \ldots, T_m)$ (S') mit [K:K'] = rn; ferner ist die Erweiterung K = K'(z, S)|K' nach dem Satz vom primitiven Element einfach, da z separabel über k(T) und damit über K' ist. Nach dem Kriterium Satz 3 ist dann der Funktionenkörper der Normfläche von $\mathfrak{A} \otimes M_r(k)$ ebenfalls generischer Zerfällungskörper.

Mit dieser Beobachtung gewinnt Satz 3 die Formulierung:

- Satz 3'. Sei $\xi \in Br(k)$, s der Schurindex von ξ (= Wurzel aus der Dimension des ξ repräsentierenden Schiefkörpers), $\mathfrak A$ eine zentral einfache k-Algebra der Klasse ξ mit $\dim \mathfrak A = r^2 s^2$, $r \in \mathbb N$: dann sind äquivalent:
 - i) Der Normflächenkörper von $\mathfrak A$ ist generischer Zerfällungskörper von ξ .
- ii) ξ besitzt einen generischen Zerfällungskörper K|k mit der Eigenschaft: K enthält einen Unterkörper K'|k, so da β K einfache Erweiterung vom Grade r's von K mit einem Teiler r' von r ist.

Bemerkung. Für hinreichend "großes" r (im Sinne der Teilbarkeitsrelation) ist Bedingung ii) stets erfüllt: der von Amitsur-Roquette angegebene generische Zerfällungskörper K|k ist eine endlich erzeugte separable (sogar reguläre) Erweiterung von k, besitzt also eine separierende Transzendenzbasis B; K|k(B) ist demnach eine einfache algebraische Erweiterung, deren Grad Vielfaches von s sein muß, da die rein transzendente Erweiterung k(B)|k den Index von ξ unverändert läßt.

Im Falle verschränkter Produkte kann man dies explizit verfolgen; erinnert sei an:

- 5. Konstruktion eines generischen Zerfällungskörpers (nach Roquette [5]). L|k sei galoissche Erweiterung mit der Gruppe G; diese operiert (von links) auf der projektiven linearen Gruppe $PGL_n(L)$. Die Cohomologiemenge $H^1(G, PGL_n(L))$ beschreibt die Klassen zentral einfacher k-Algebren der Dimension n^2 mit Zerfällungskörper L (vgl. [6]: chap. X, § 5); dabei ist der Zusammenhang der folgende:
 - i) Zu einer solchen Algebra II sei

$$\rho:\mathfrak{A}\to M_n(L)$$

eine L-Darstellung; zu jedem $\sigma \in G$ gibt es ein $P_{\sigma} \in GL_n(L)$ mit

$$\varrho(a)^{\sigma} = P_{\sigma}^{-1}\varrho(a)P_{\sigma}$$
 für alle $a \in \mathfrak{A}$;

die Klassen der P_{σ} modulo L^* bilden einen 1-Cozykel.

ii) Umgekehrt repräsentiere man einen 1-Cozykel mit Werten in $PGL_n(L)$ durch Matrizen $P_{\sigma} \in GL_n(L)$ und definiere eine Algebra $\mathfrak A$ durch

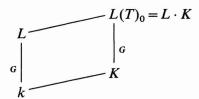
$$\mathfrak{A} := \{ A \in M_n(L) | A^{\sigma} = P_{\sigma}^{-1} A P_{\sigma} \quad \text{für alle } \sigma \in G \}.$$

Sei nun eine n^2 -dimensionale k-Algebra $\mathfrak A$ gegeben, L ein galoisscher Zerfällungskörper von $\mathfrak A$ mit $\operatorname{Gal}(L|k) = G$. $\{P_{\sigma}|\sigma \in G\}$ sei ein System von Matrizen aus $GL_n(L)$, die modulo L^* die zu $\mathfrak A$ gehörende Cohomologieklasse repräsentieren. Man wähle Unbestimmte $\{T_{\sigma}|\sigma \in G\}$ über L; auf dem Körper $L(T)_0$ der homogenen rationalen Funktionen in den T_{σ} vom Grade 0 über L operiert G durch:

$$\sigma \in G, f \in L(T)_0$$
: $\sigma(f) = f^{\sigma}(P_{\sigma}(T_{\rho})_{\rho \in G});$

dabei sei f^{σ} die durch Konjugation der Koeffizienten aus f hervorgehende Funktion, $P_{\sigma}(T_{\varrho})$ die Linearform $\sum_{\tau \in G} p_{\varrho,\tau} T_{\tau}$ mit $P_{\sigma} = (p_{\varrho,\tau})_{\varrho,\,\tau \in G}$.

Dann ist der Fixkörper $K:=L(T)_0^G$ unter dieser Operation ein generischer Zerfällungskörper von $\mathfrak{A}:$



6. Darstellung eines verschränkten Produkts. Die Algebra $\mathfrak A$ sei ein verschränktes Produkt, d. h. sie enthalte einen galoisschen Unterkörper L|k vom Grade n über k. Dann gibt es eine Basis $\{u_{\sigma}|\sigma\in G\}$ $(G=\operatorname{Gal}(L|k))$ von $\mathfrak A$ über L ($\mathfrak A$ als L-Links-Vektorraum betrachtet) mit

$$u_{\sigma}u_{\tau}=c_{\sigma,\tau}u_{\sigma\tau},\ c_{\sigma,\tau}\in L^*,\ \sigma,\,\tau\in G$$

und

$$u_{\sigma} \alpha u_{\sigma}^{-1} = \alpha^{\sigma}$$
 für alle $\alpha \in L \subset \mathfrak{A}$.

Die $c_{\sigma,\tau}$ bilden einen 2-Cozykel; dabei sei $u_{id} = 1_{\mathfrak{A}}$ gewählt, so daß also $c_{id,\sigma} = c_{\sigma,id} = 1$ für alle $\sigma \in G$.

Die Darstellung durch Rechtstranslation

$$\mathfrak{A}^0 \to \operatorname{End}_L(\mathfrak{A}), \ a \mapsto (b \mapsto ba) \ (\mathfrak{A}^0 \text{ die zu } \mathfrak{A} \text{ invers-isomorphe Algebra})$$

liefert in der Basis $\{u_{\sigma}|\sigma\in G\}$ nach Übergang zur transponierten die Darstellung

$$\varphi \colon \mathfrak{A} \to M_n(L)$$

mit
$$\varphi(u_{\sigma}) = \begin{pmatrix} \vdots \\ \vdots \\ \vdots \end{pmatrix} \tau$$
 und $\varphi(\alpha) = \begin{pmatrix} \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \end{pmatrix} \tau$, $\sigma \in L$. Mit den Matrizen

$$P_{\sigma} := \begin{pmatrix} \vdots \\ \dots c_{\sigma,\tau}^{-1} \dots \\ \vdots \\ \sigma \end{pmatrix} \sigma \tau$$

folgt dann (wie aus der Cozykelbedingung für $c_{\sigma,\tau}$ folgt):

$$\varphi(\mathfrak{A}) = \{ A \in M_n(L) | P_{\sigma} A^{\sigma} = A P_{\sigma} \text{ für alle } \sigma \in G \}.$$

Die $\mathfrak A$ entsprechende Cohomologieklasse wird also durch den Cozyklus $\{P_{\sigma}\}$ repräsentiert; die Operation von G auf $L(T)_0$ (siehe 5.) sieht demnach explizit so aus:

$$\sigma \in G, f \in L(T)_0$$
: $\sigma(f) = f^{\sigma}((c_{\sigma, \rho}^{-1}T_{\sigma\rho})_{\rho \in G}).$

Erzeuger von $K := L(T)_0^G$. Die hier angegebene Konstruktion folgt Amitsur ([2]: §10, pp. 36ff), umgeht jedoch einen Fehler beim Beweis von Cor. 10. 1.

i) Sei $L = k(\omega)$, $L(T)_0 = K \cdot L = K(\omega)$; man wähle ein festes $\sigma \in G$, $\sigma \neq \mathrm{id}$, und betrachte das Element

$$t := T_{\sigma} T_{id}^{-1} \in L(T)_0$$
.

Es gilt

$$t = x_1 + x_2 \omega + \dots + x_n \omega^{n-1} \text{ mit gewissen } x_i \in K,$$

$$\varrho(t) = x_1 + x_2 \varrho(\omega) + \dots + x_n \varrho(\omega)^{n-1}, \ \varrho \in G;$$

dieses Gleichungssystem ist nicht singulär, da L|k separabel ist, also

$$L(\lbrace \varrho(t) | \varrho \in G \rbrace) = L(x_1, \ldots, x_n) \subset L(T)_0.$$

Explizit:

$$\varrho(t) = c_{\sigma,\sigma}^{-1} T_{\rho\sigma} T_{\rho}^{-1},$$

die homogenen Funktionen $T_{\varrho\sigma}T_{\varrho}^{-1}$, $\varrho\in G$, die $L(T)_0$ über L erzeugen, liegen demnach alle im Körper $L\big(\{\varrho(t)|\varrho\in G\}\big)=L(x_1,\ldots,x_n)$:

$$L(T)_0 = L(x_1, \ldots, x_n).$$

Der Unterkörper $k(x_1, \ldots, x_n)$ von K erfüllt

$$k(x_1,\ldots,x_n)\cdot L=K\cdot L=L(T)_0;$$

da K|k regulär ist ([5]: Lemma 3, p. 425), K also zu L über k linear disjunkt, folgt:

$$K = k(x_1, \ldots, x_n).$$

ii) Für jedes $\varrho \in G$ gilt $(\sigma \in G \text{ immer noch fest, } \sigma \neq \text{id})$:

$$\varrho(t)T_{\varrho}-c_{\varrho,\sigma}^{-1}T_{\varrho\sigma}=0.$$

Dies ist ein lineares Gleichungssystem in den T_ϱ mit Koeffizienten in L(T), die Koeffizientenmatrix hat die Gestalt

$$\Delta - \Sigma$$
,

wobei Δ die Diagonalmatrix aus den $\varrho(t)$ und Σ die monomiale Matrix

$$\Sigma = \begin{pmatrix} \vdots \\ \vdots \\ \vdots \\ \varrho, \sigma \end{pmatrix} \varrho$$

ist; Σ ist nichts anderes als $\varphi(u_{\sigma}^{-1})^{t}$. Es gilt also:

$$\det(\Delta - \Sigma) = 0 = g(x_1, \dots, x_n)$$
 mit einem Polynom $g \in L[X_1, \dots, X_n]$.

Die Koeffizienten von g liegen bereits in k, denn für ein $\tau \in G$:

$$g^{\tau}(x_1, \ldots, x_n) = \det(\Delta^{\tau} - \Sigma^{\tau});$$

$$\Delta = \sum_{i=1}^{n} x_i \varphi(\omega^{i-1} \cdot 1_{\mathfrak{A}}),$$

also

$$\Delta^{\tau} = \sum_{i=1}^{n} x_{i} \varphi(\omega^{i-1} \cdot 1_{\mathfrak{A}})^{\tau} = \sum_{i=1}^{n} x_{i} P_{\tau}^{-1} \varphi(\omega^{i-1} \cdot 1_{\mathfrak{A}}) P_{\tau} = P_{\tau}^{-1} \Delta P_{\tau}.$$

Ebenso: $\Sigma^t = \varphi(u_{\sigma}^{-1})$, also $(\Sigma^t)^{\tau} = P_{\tau}^{-1} \Sigma P_{\tau}$, da $\varphi(u_{\sigma}^{-1}) \in \mathfrak{A}$,

$$\det(\Delta - \Sigma)^{\tau} = \det(P_{\tau}^{-1}(\Delta - \Sigma)P_{\tau}) = \det(\Delta - \Sigma) = g(x_1, \dots, x_n).$$

Dabei ist $g(X_1, \ldots, X_n)$ von der Form

$$g(X_1, ..., X_n) = N_{L(T)_0/K}(X_1 + X_2\omega + ... + X_n\omega^{n-1})$$
+ Formen vom Grade $< n \text{ in } X_1, ..., X_n.$

g ist normiert in X_1 , ferner irreduzibel (da die Normform es ist). tr $\deg_k K = n-1$: also

$$K = k(x_1, \ldots, x_n)(x_1)$$

mit algebraisch unabhängigen $x_2, \ldots, x_n; x_1$ algebraisch vom Grade n über $k(x_2, \ldots, x_n)$.

Als Resultat ergibt sich:

Satz 4. Ist U ein verschränktes Produkt zur galoisschen Erweiterung L|k vom Grade n, so hat der Amitsur-Roquettesche generische Zerfällungskörper K|k die Gestalt:

$$K = k(x_1, \ldots, x_n)$$

mit der Relation $F_n(x_1, \ldots, x_n) + F_{n-1}(x_1, \ldots, x_n) + \cdots + F_0(x_1, \ldots, x_n)$, wo die F_i Formen über k vom Grade i sind; F_n ist die — in der Variablen x_1 normierte — Normform der Erweiterung L|k.

Bemerkung. Ist L|k zyklisch mit $Gal(L|k) = \langle \sigma \rangle$, $\mathfrak{A} = (L, \sigma, \alpha)$ mit einem $\alpha \in L^*$, so hat diese Relation die einfache Form:

$$N_{I,lk}(x_1+x_2\omega+\cdots+x_n\omega^{n-1})-\alpha$$
.

Satz 4 liefert sofort (mit dem Kriterium Satz 3):

Theorem II. Der Funktionenkörper der Normfläche eines verschränkten Produkts ist generischer Zerfällungskörper dieser Algebra.

Korollar. Sei $\xi \in Br(k)$, $s_0 := \min\{[L:k]|L$ galoisscher Zerfällungskörper von $\xi\}$; dann ist der Normflächenkörper jeder ξ repräsentierenden Algebra \mathfrak{A} , deren Dimension Vielfaches von s_0^2 ist, generischer Zerfällungskörper von ξ .

Bemerkung. s_0 ist jedenfalls ein Teiler von (ind ξ)!, wo ind ξ den Schurindex von ξ bezeichne.

Beweis des Korollars. ξ wird dargestellt durch ein verschränktes Produkt $\mathfrak B$ mit

dim
$$\mathfrak{B} = s^2$$
;

der Normflächenkörper jeder Algebra

$$\mathfrak{A} = M_r(k) \otimes \mathfrak{B}, r \in \mathbb{N}$$

ist nach dem Korollar zu Satz 3 und dem eben bewiesenen Theorem generischer Zerfällungskörper von ξ .

Bemerkung. Im Falle einer Quaternionenalgebra $\mathfrak A$ ist die Normform P eine quadratische Form; die Zerfällungskörper von $\mathfrak A$ sind genau die Körper L|k, über denen P isotrop wird: alle diese Körper entstehen durch k-Spezialisierung aus dem Funktionenkörper von P, wie M. Knebusch ([4]) gezeigt hat (vgl. auch [7]). Theorem II verallgemeinert diesen Sachverhalt.

Literatur

- [1] A. A. Albert, Structure of algebras, Amer. Math. Soc. Coll. Publ. 24, 3. ed., 1968.
- [2] S. A. Amitsur, Generic splitting fields of central simple algebras, Ann. of Math. 62 (1955), 8-43.
- [3] M. Deuring, Algebren, 2. Aufl., Ergebnisse der Mathematik, Berlin-Heidelberg-New York 1968.
- [4] M. Knebusch, Generic splitting of quadratic forms. I, Proc. London Math. Soc. (3) 33 (1976), 65-93.
- [5] P. Roquette, On the Galois cohomology of the projective linear group, Math. Ann. 150 (1963), 411-439.
- [6] J.-P. Serre, Corps locaux, 2e ed., Paris 1968.
- [7] E. Witt, Über ein Gegenbeispiel zum Normensatz, Math. Z. 39 (1935), 462-467.

Fachbereich Mathematik der Universität, Universitätsstraße 31, D-8400 Regensburg

Eingegangen 22. September 1977