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NONEXISTENCE OF A SMALL PERFECT RATIONAL CUBOID

IVAN KOREC, Bratislava

1. Introduction

There were several attempts to find perfect rational cuboid, i.e. a rectangular
parallelepiped of which the length of the edges, the face diagonals and the body
diagonal are integers. (For the sahe of brevity, below we shall say ‘“‘the edge”
instead of ‘“‘the length of the edge”, and analogously for the diagonals.) These
attempts are discussed in [2]. Up to now, no of these attempts was succesful.
However, there are cuboids for which six of the seven length mentioned above are
integers. For example (see [2]):

a) if the edges are 44, 240, 117 then all face diagonals are integers;

b) if the edges are 117, 520, 756 then two face diagonals and the body
diagonal are integers;

c) if the edges are 124, 957, V13 852 800 then all the four diagonals are
integers.

In many attempts (e. g. [5], [6]) to find a perfect rational cuboid the authors
choose a necessary condition for cuboid to be a perfect rational one. Then they
choose a suitable subclass of the class of all cuboid satisfying the necessary
condition and tried to find the perfect rational cuboid in the chosen subclass.
Sometimes they also proved that in the considered subclass no perfect rational
cuboid exists. Of course, such results do not mean that there is no perfect rational
cuboid in general. Maybe, there is even a relatively small perfect rational cuboid
lost by forming the subclass.

2. The aim of the present paper

In our attempt we consider the class of all perfect rational cuboids. Using
a computer program, we shall look for a perfect rational cuboid which is small in
some sense (roughly speaking, one with a small edge). Of course, this bound
depends on the computation time used, on the computer, etc. However, the present
paper does not deal with the details of the computer program. It mainly deals with
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a number-theoretical results on which the program is based. We tried to give the
results in the form suitable for programming.

In Section 3 parameters a, b, c, d, v are introduced; a, b, ¢ are independent
each from others (at least when they are introduced), d, v are functions of a, b, ¢
in essential. Then some inequalities and other conditions for a, b, c, d, v are
derived (provided that the parameters correspond to a perfect rational cuboid).

In Section 4 modul conditions and strong modul conditions are defined. Then
some further conditions for the parametefs a, b, ¢ (corresponding to a perfect
rational cuboid) are derived. These conditions are formulated as strong modul
conditions for a when b, c are fixed. They form our main tool for excluding a when
b, c are fixed. Other conditions, which are given in Section 5, are used only when
the condition from Section 4 are not sufficient to exclude all values of a. Section 6
contains a rough description of the computer program and the obtained numerical
results. The least edge of any perfect rational cuboid must be at least 10 000.

3. Parameters a, b, c, d, v and inequalities for them

Let x, y, z be the edges of a perfect rational cuboid, i.e. positive integers such
that

V(x*+y?), V(x*+7%), V(X +y +72), V(y*+2%) (3.1)
are also integers. Since V(x”+ y®) is an integer greater than y there is a positive
integer a such that

x’+y*=(y+a)’

what easily implies

1 (x*
v=3(a9) G2
Analogously we can find positive integers b, ¢ satisfying
1 /x?
=3 (5-) (33)
1 /x? <
Vo) =5 (7 ¢ (3.4)

Since the function

74



is decreasing on the interval (0, ©) and f(x) =0, the formulas (3.2)—(3.4) imply
a<x, b<x and

c<a, c¢c<b, (3.5)

. For many considerations below, y and z can be interchanged. In these cases we
shall assume y <z (the equality is obviously impossible), what implies

b<a (3.6)

Sometimes we shall also assume that x is the least edge of the cuboid; if this
assumption or (3.6) are used, they will be explicitely mentioned. From (3.2)—(3.4)

we can obtain
(e + (G-0) = (5o
what after an easy computation gives
(a’c®+ b*c*—a’b*)x* —2a’b’c*x* + a*b’c*(a® + b* — ¢?) N (3.7)
Consider (3.7) as a quadratic equation for X = x”. Its discriminant

(2a’b*c?)’ —4(a’c’* + b*’c®— a’bPa’b’c*(a* + b*— c?) =
=4a’b’c*(a’b’c*—((a’ + b>)c*— a’b*)((a® + b)) — ¢?)) =
=4a’b’c*(a’b’c®*—(a’+ b>)’c* + (a’ + b*)c* + a’b*(a’* + b*) — a’b’c?) =
=4a’b’c*(a’ + b*)(a’* - c*)(b* - ¢?)

st be a square. Hence there is an integer d such that

d*=(a’+b*)(a* - *)(b*—c?) 3.8)
It can be easily checked that
(abc + d)(abc — d) = (a* + b* — c*)(a’*c* + b’c* — a’b?) 3.9

If we choose the sign of d conveniently (later we shall see that d must be chosen
positive) we 'obtain

._abc(abc+d)

—azcz+b2cz_a2b2 (3-10)
However, using (3.9) we can replace (3.10) by
,_abc(a’+b’=c?)
xi= pr— (3.11)
Therefore there is a positive integer v such that
v?>=abc(abc — d)(a*+ b*—c?) (3.12)
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Let k be a positive integer. The numbers a, b, c, d, v satisfy the conditions
(3.8), (3.12) if and only if the numbers

ay=ka, bi=kb, c,=kc, d=kd, v,=k*v (3.13)

also satisfy them. (The same holds for some conditions below, e.g. for the
inequalities (3.15), (3.17.) Therefore by looking for a, b, ¢, d, v we may assume

D(a, b, c)=1 (3.14)

Notice that we cannot prove (3.14) from the assumption D(x, y, z)=1.
Now, consider the function

F(t)=(a’c*+b’c* — a*b?)t* = 2a°b*c*F + a*b>c*(a* + b’ — c?)
of the real variable t and assume (3.6). We have

F(c)=a’c®+ b*c®*—a’b*c* —2a*b*c* + a*b’c® + a*b*c* — a’bc' =

=(a*b’c®—2a’b’c*+ b’c®) + (a’b*c* — 2a’b*c* + a’c®) =
=b’c*(a’ -’y +a*c*(b> - c?)*>0

F(a)=a’c®+a*b’c*— a®h*—2a*b*c® + a*b>c* + a’b*c® — a?b’c* =

=a‘(c’ = b*)+a’b’c’(b* - c*) = (a’ - a’b*c?)(c* - b?) <0
F(x)=0

Hence F(t) has two positive roots, x and a number from the interval (c, a). Since
F(t) is an even polynomial of degree (at most) four, F(f) cannot have any further
positive roots (and x its simple root). Since x is the greater positive root of F (1),
the number d in (3.10) and (3.11) must be positive. Further, we have F(t)>0 for
all t>x, and hence

a’c’+ b*c*—a*h*>0

This inequality can be rewritten into then form

1 1_1
;l—2+'b—z>? (3.15) .
and also into the form
bc
a <\/_b—2———_cz. (3.16)
Further, (3.6) implies ;11—2<B1—2, and hence by (3.15) we have
b<cV2 (3.17)

Note that (3.6) was substantialy used only in (3.17); the inequalities (3.15), (3.16)
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hold also without this assumption because (3.15) is symmetric in a, b and (3.16) is
a corollary of (3.15).
Now, we shall assume

x<y<z (3.18)

Then xV2<V(y?>+ z°) and hence (3.4) implies

wb(E-g

C

x .
Therefore for r =E we obtain

r\/§<% (r\r-1)

what together with r>1 gives r>V2+V3, ie.

x>(V2+V3)c. (3.19)

The above consideration can be summarized as follows
3.1. Theorem. Let there be no positive integers a, b, ¢, d, v which satisfy
(3.5), (3.6), (3.8), (3.12), (3.14), (3.15), (3.17) and

c=GC, (3.1.1)

where C, is a constant. Then there is no integral cuboid with the least edge x
satisfying

x=G,.(V2+V3). (3.1.2)

The assumption of Theorem 3.1 will be verified by a computer computation.
However, neither condition (3.18) nor its consequences will be immediately used in
the computer program. Later the author wants to use the computer results also in
another way, in which (3.18) is not suitable.

4. Strong modul conditions
In this section we shall prove some consequences of the conditions

(3.8), (3.12), (3.14) 4.1)

(Note that (3.6) and (3.15) are not contained in (4.1). Further, (4.1) is symmetric
in a, b, hence we may interchange a, b in the consequences of (4.1).)
We shall look for the consequences useful in the computer computation for
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Theorem 3.1. The consequences will be formulated as modul conditions
a=r, ..., n (modp") 4.2)

for fixed b, ¢ and for a fixed prime p. The meaning of (4.2) is: a is congruent with
one of numbers r, ..., r modulo p". The less k is (and the greater p" is) the
stronger (4.2) seems to be. The conditions given here are called strong because k
does not exceed 5 in any of them.

For any prime p and for any nonzero integer m we denote by ex(p, m) the
exponent of the prime p in the standard form of m, i.e. the greatest integer e such
that p© divides m. We shall very often use the following properties of ex(p, m):

ex(p, m.n)=ex(p, m)+ex(p, n) (4.3)
ex(p, m)+ex(p, n) —» ex(p, m+n)=min(ex(p, m), ex(p, n)) (4.4)

When p is fixed we shall write ex(m) instead of ex(p, m).

The next theorem allows us to exclude some pairs b, ¢ from further
considerations. Formally, Theorem 4.1 gives modul conditions (4.2) with k =0 for
these b, c.

4.1. Theorem. Let the numbers a, b, c, d, v satisfy (4.1) and let p be a prime.
Then no of the following conditions take place

2)ex(c), 2)ex(b), ex(b*—c?)=2 4.1.1)
ex(c)>0, ex(b)>0, 2fex(b’—c?) (4.1.2)

2]ex(c), ex(b)>0, ex(c)>ex(b) (4.1.3)

ex(c)>0, 2)ex(b), ex(b)>ex(c) (4.1.4)

2| ex(c), ex(c)>0, 2|ex(b), ex(b)>0, ex(b>—c*)=6 (4.1.5)
ex(b)=ex(c), ex(b>—c*)<4ex(c), 4)ex(b*—c?) (4.1.6)

Proof. In all cases we have p | b, p’l c,and hence by (3.14) p/a,i.e. ex(a)=0.
Therefore

2ex(d)=ex(d*)=ex(b*—c?)

what immediately excludes the case (4.1.2), and partially also the case (4.1.6). In
all remainder cases we have

ex(d)<ex(abc)
and therefore

2ex(v) = ex(v®) = ex(abc) + ex(abc — d) + ex(a’> + b*> - ¢?)
; =ex(b)+ ex(c) + ex(d)
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In the cases (4.1.3) and (4.1.4) ex(b)+# ex(c) and hence

2ex(d)=ex(b’>— c*) =min (ex(b?), ex(c?))=2 min (ex(b), ex(c))
2ex(v) =2 min (ex(b) + ex(c)) + max (ex(b), ex(c))

The right-hand side is odd, what is a contradiction. In the cases (4.1.1), (4.1.5) and
the rest of (4.1.6) the number ex(d) is odd, ex(b) + ex(c) is even, hence 2ex(v) is
odd again, what is a contradiction.

For the next theorem we shall need the following well known lemma. (The
proof can be found e.g. in [4].)

4.2. Lemma. Let p be an odd prime. Then the congruence

s’+1=0 (mod p?) 4.2.1)

has exactly two solutions (modulo p?) if p=1 (mod 4) and has no solution if p=3
(mod 4).

4.3. Theorem. Let integers a, b, c, d, v satisfy (4.1), let p-l (mod 4) be
a prime and let s satisfy (4.2.1). Then the condition

ex(c)=0, ex(b)=0, 2|ex(b>—c?) 4.3.1)

implies
a=*c, *bs (mod p) (4.3.2)

Further, every of the conditions

2] ex(c), ex(b)=0 (4.3.3)
ex(c)=0, 2fex(b) (4.3.4)

implies
a=0, ¢, £bs (mod p?). (4.3.5)

Proof. If (4.3.1) holds then
2ex(d)=ex((a*+ b*)(a’—c?)) + ex(b*—c?)

implies that ex((a’+ b*)(b*>— c?)) is odd, hence positive.
Therefore

(@®>+b*)(a’—c*)=0 (mod p)

and the solutions of this congruence are given in (4.3.2).

Now let (4.3.3) hold. If ex(a)=2 then a=0 (mod p?), hence it suffices to
consider ex(a)=0 and ex(a)=1 in what follows. Let ex(a)=0 at first. If
ex(a’+ b*)=0 then ex(d)=0, hence

2ex(v)=ex(c)+ex(abc — d) + ex(a’*+ b>*— c*)=ex(c)+ 0+ 0=ex(c)

r .
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is odd, what is a contradiction. Therefore ex(a’+ b?) is positive and since
ex(a’+ b*)=2ex(d) we have ex(a’+ b?)=2, i.e.

a’+b*=0 (mod p?)
what implies a = + bs (mod p?).
Now let ex(a)=1. Since
2ex(v)=1+ex(c) + ex(abc —d)

the number ex(abc—d) is even. Since ex(abc)=2 and ex(d)>0 we have
ex(d)Z2, i.e. ex(d’)=ex(a’— c*)Z4, and thus

a’—c’=0 (mod p*) (4.3.7)

Since ex(a)=1 we have ex(a+c)=1 or ex(a—c)=1. Then ex(a—c)=3 or
ex(a+ c)Z3, respectively. Therefore

a=*c¢ (mod p?)

what is contained in (4.3.5).

Now assume (4.3.4). Analogously as above we may assume ex(a)=0 or
ex(a)=1. Let ex(a)=0 at first. If ex(a’— c*) =0 then ex(d) =0, hence 2ex(v)=
ex(b) +ex(abc — d)+ ex(a*+ b*—c*)=ex(b)+0+0=ex(b) is odd, what is
a contradiction. Therefore ex(a®— c?) is positive. Since ex(a’— c?)=2ex(d) we
have ex(a’—c?)=2, i.e.

a’—c’=0 (mod p?)
what implies a = + ¢ (mod p?).
Now let ex(a)=1. Then
2ex(v)=1ex(b)+ ex(abc — d)
hence the number ex(abc — d) is even. Analogously as in the previous case we

obtain ex(d®) = ex(a’ + b*) = 4. Therefore for a, =§, b, =£ we have ex(a,)=0 and

ai+bi=0 (mod p?)

what implies a,= + b,s (mod p?). Hence a= + bs (mod p°), what is contained in
(4.3.5).

4.4. Theorem. Let integers a, b, c, d, v satisfy the condition (4.1) and let
p=3 (mod 4) be a prime. Then (4.3.1) implies

a=*c¢ (mod p) (4.4.1)
and (4.3.4) implies
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a=0, £¢ (mod p?) (4.4.2)
Further, (4.3.3) implies
a=tc (mod p?) (4.4.3)

Proof.The proof of (4.4.1) and (4.4.2) is very similar to that of (4.3.2), (4.3.5)
in Theorem 4.3. Therefore we shall only prove (4.4.3); let (4.3.3) hold.
If ex(a)=0 then

2ex(v)=ex(c)+ ex(abc — d)

what implies ex(d)# (. However 2ex(d)=ex(a’+b?), i.e. a’+b>=0 (mod p),
what contradicts p =3 (mod 4). If ex(a) =1 we obtain (4.3.7) and then (4.4.3) in
the same way as in the proof of Theorem 4.3.

It remains to exclude ex(a) = 2. In this case by (4.1.3) of Theorem 4.1 we have

ex(c)=1. Denote d,=§, ¢ =<. We have

di=(a’+ b*)(ai —c1)(b>— )
i1=b>.(=c?).b* (mod p)
di+(b*c))’=0 (mod p)

what contradicts p=3 (mod 4) and ex(b’c,)=0.
4.5. Theorem. Let a, b, ¢, d, v satisfy (4.1) and let p=2. Then (4.3.1)
implies

a= *c¢ (mod 8) 4.5.1)

Proof. If a is even then 2ex(d) = ex(b” — c”), what is a contradiction. There-
fore a is odd. Then

2ex(d)=1+ex(a’—c*)+ex(b’>—c?)
Hence ex(a’— c?) is even and since ex(a’— c*)=3 we have
a’—c*=0 (mod 16)

If 4]a+c and 4|a—c then 4]|2a, i.e. a is even, what is a contradiction. There-
fore 8|a—c or 8|a+c, i.e. a= *¢ (mod 8), q.e.d.

4.6. Theorem. Let a, b, c, d, v satisfy (4.1) and the inequalities c <a, c<b
and (3.15), let p=3 (mod 4) be a prime and let 2}ex(c). Then p’<c.

Proof. Assume, conversely, p =c. Since ex(c) is odd and ex(c)=2 we have
ex(c)=1. We may assume (3.6) without loss of generality.

If ex(b) =1 then Theorem 4.1 implies 2 | ex(b® — ¢?), ex(b* — ¢*) >2 and hence
p*|b*—c’. Therefore p*=b>— c><c* what is a contradiction. '
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If ex(b)>1 then ex(a)=0. Denote c.=§. b, =2, d.=§. Since

di=(a’+b*)(a*—c*)(bi - ci)
and p|b, we have
di=-a'ci (mod p)
di+(a’c,)’=0 (mod p)

what contradicts p=3 (mod 4) and p+a’c,.
If ex(b) =0 then by Theorem 4.4 we have (4.4.3), and since a > ¢ we obtain
aZp'—c. Then (3.15) implies

1 1 1

= S>— 4.6.1
DA s bt
Since p>>c¢, p|c we have c=p(p—1) and hence
(p'—cyZ(p'—plp-1))=(p'-p’+p)=p(p’—p+1)’Zp*(c+1)
Zc(c+1)

Therefore (4.6.1) implies

e

| 1 |
5 s
c(c~l—l)'+(c+l)~ c’

and hence

c+c’>(c+1)

what is a contradiction.

5. Other conditions

The main tool for excluding the triples (a, b, c) i.e., for proving that there are
no positive integers d, v such that a, b, c, d, v satisfy (3.5), (3.8), (3.12), (3.14)
and (3.15)) were given in the previous section. Here we give some additional
conditions. The condition (5.1.1) excludes a twoparametrical set of solutions of
(3.8) and the conditions from Theorem 5.2 will be used only if no previous
conditions are sufficient.

5.1. Theorem. If positive integers a, b, c, d, v satisfy (3.5) and (4.1) then

b*+ ac (5.1.1)
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Proof. Let, conversely, b>=ac. Since D(a, b, c)=1 we have D(a, c)=1.
Hence there are integers r, s such that

a=r*, b=rs, c=s>, D(r,s)=1
Further,
d*=(a’+ac)(a’— c*)(ac — c*)=ac(a + c)(a* — ¢*)(a — ¢) = b*(a® — ¢*)?
and hence d = b(a®— c¢?). Therefore
v>=abc(abc — b)(a®— c*))(a®+ b*>— c*)=b*(c’ + ac — a’)(a®’ + ac — ¢?)
Thus the number
(c®+ac—a’)(a*+ac—c?)=(s"+r’s>— r')(r'+ r’s*—s%)
must be a square. However,
D(r’s*+r'—s*, r’s’+s*—r')=D(2r’s? r’s’+ r' —s*) =1
Therefore there are positive integers ¢, u such that
r'+rs’—s'=0, s*+r’s’—r'=u’

However, by [1] these diophantine equations have no nontrivial solution (e.g. any
solution with r>s>0), what is a contradiction.

5.2. Theorem. Let a, b, c, d, v satisfy the conditions (4.1) and let p be a prime.
Then

a) the number
(a*+ b>)(a’— c?)b* = c?)
is a quadratic residue modulo p;
b) if
(a*+ b*)(a’ = c*)(b* - c?)=d; (mod p)
then at least one of the numbers
abc(abc +d,)(a’+ b>—c?), abc(abc—d,\)(a’+ b*>—c?)

is a quadratic residue modulo p.

The proof is trivial, and will be omitted. By this theorem we can sometimes
replace too big numbers d, v by their residues modulo p.
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6. Structure of the program and obtained result

A rough flowchart of the program is given in the picture. The input consists of
two positive integers Cmin= cm.x Which are interpreted as the bounds for ¢ (and of
some parameters for outputs). The values of ¢ are considered in the successive
order. For c fixed, the bound of b are given by (3.5) and (3.17) ; the values of b are
considered in successive order, too. For ¢, b fixed, the program considers all
a satisfying (3.6) and (3.15); however, they are not considered individually.

Denote by W the set of all ordered tripples satisfying (3.5), (3.6), (3.14),
(3.15) and corresponding to perfect rational cuboids (we do not know whether
W =0 or not). The actual c is declared to be excluded if the program finds out that
there are no b, a satisfying (c, b, a) € W. Analogously, for fixed c, b is excluded if
the program finds out that there is no a satisfying (c, b, a) e W. For fixed c, b, the
value a is excluded if the program finds out (c, b, a)¢ W.

The tool for excluding ¢, b, or a are strong modul conditions and other
conditions given in the previous section. Some values of b, or even of ¢, can be
excluded directly. However, usually the values of a must be gradually excluded for
fixed b, c. In this case the program generates necessary modul conditions (and
other conditions) on a for (c, b, a) € W. It gradually forms the conjunction of all
these conditions (in the form of modul condition, too). As soon as all a are
excluded (i.e. the formed conjunction represents the empty set) the actual b is
exluded. In fact, the test whether all a are excluded is more often than in the rough
block diagram. If some values of a are not excluded then they are printed (together
with the actual c, b) for further consideration. They may correspond to a perfect
rational cuboid. (In fact, this case never occured.)

A most important subprogram of our program is the subprogram for generat-
ing a conjuction of two modul conditions. Modul conditions are considered in the
form (4.2); however, their moduls need not be powers of primes. The modul of the
conjunction is usually the least common multiple of the moduls of the original
modul conditions. However, the subprogram consideres also the bounds for a. As
soon as every rest represents at most one number, the resulting modul becomes
zero. Congruence modulo 0 is understood as equality.

The condition (3.14) and Theorem 5.1 could be applied in our main program
only after the modul of the formed conjunction becomes zero. Besides, they are
applied only after all strong modul conditions.

The really performed computations on the computer CDC 3300 excluded (in
3 hours) all ¢=3200. Since

3200.(V2 +V3)>10 000

Theorem 3.1 implies:

Result. There is no perfect rational cuboid with the least edge smaller or
equal 10 000.
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MAIJIBIM COBEPUWIEHHBIN PALIMOHAJIBHBIV KYBOUW]I HE CYIECTBYET
Hsau Kopeu, Bpaticiasa

[MpsMOyroNibHbIA Napannenenunes Ha3biBaeTCA COBEPUIEHHLIM PAlIMOHATILHBIM KYGOMIOM, €CITH
JJIMHBI Bcex ero pebGep, ero QHAroHaja¥ M [HAaroHajied BceX €ro rpaHel SBISIOTCS LENbIMH YHCIaMH.
CoBeplIeHHbIA palMOHANbHBIA KYyOOMJ CYLIECTBYEeT TOrla W TOJBbKO TOT[la KOTAA CYIIECTBYHOT
NOJIOXUTENbHbIE LieNble YHCaa a, b, ¢, d, v g kotopbix uMeeT Mecto (3.5), (3.8), (3.12), (3.14)
u (3.15). Joka3biBatOTCH HEKOTOPBIE CIAEACTBHSA 3THX ycnoBHi. HanpuMmep, ecnu p npoctoit genurens
uncna c 4 p=3 (mod 4), p*|c, 7o a= = ¢ (mod p*). C noMOLLBIO 3THX CIEACTBUIA H C UCTIONL3OBAHUEM
OBM pokasbiBaeTcsi, YyTo ycnoBus (3.5)—(3.15) He sbimonustorcs aas ¢ =3200. Kak cneactsue
noJyyaeTcs, YTO JJIMHA KaXaoro pebpa CoBepILieHHOTO palMOHanbHOro Kybouaa (ecnu Takoi BooGxe

cyxectByeT) Gonbiue wiau pasha 10000.
SUHRN
NEEXISTENCIA MALEHO PYTAGOREJSKEHO KVADRA
Ivan Korec, Bratislava

S pouzitim samocinného pocitata sa dokazuje, ze neexistuje pytagorejsky kvader (t. j. kvader,
v ktorom dlzky vSetkych hran i uhlopriecok sii celé &isla) s dfzkou najkratej hrany men$ou alebo rovnou
10 000.
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