

Werk

Label: Article **Jahr:** 1983

PURL: https://resolver.sub.uni-goettingen.de/purl?312901348_42-43|log14

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XLII-XLIII-1983

SOME NEW CRITERIONS FOR SEQUENCES WHICH SATISFY DUFFIN—SCHAEFFER CONJECTURE, I.

OTO STRAUCH, Bratislava

In [4, p. 255], Duffin and Schaeffer gave following conjecture (abbreviated D.S.C.):

Let $\{q_i\}$ be a one-to-one sequence of positive integers and $\{f(q_i)\}$ be a sequence of positive real numbers. If the series

$$\sum \varphi(q_i)f(q_i)$$

is divergent (φ stands for Euler totient function), then for almost all u the diophantine inequality

$$\left|u-\frac{p}{q_i}\right| < f(q_i)$$

has for infinitely many i an integer solution p with g.c.d. $(p, q_i) = 1$.

In [1] we proved following criterion for D.S.C., see [1, Theorem 5 and Proof of Theorem 14]:

Let $N(q_i, q_j, t)$ denote the number of pairs of positive integers x, y for which

$$0 < \frac{x}{q_i} - \frac{y}{q_i} \le t$$

$$0 < x < q_i, \ 0 < y < q_i, \ (x, q_i) = (y, q_i) = 1$$
(1)

Theorem 1. Let there for infinitely many positive integer m exist positive constants c_m , c'_m with $c'_m \rightarrow 0$ for $m \rightarrow \infty$, such that

$$\sum_{m < i, j \leq n} N(q_i, q_j, t) \leq c_m t \left(\sum_{m < i \leq n} \varphi(q_i) \right)^2 + c'_m \left(\sum_{m < i \leq n} \varphi(q_i) \right)$$
 (2)

for all sufficiently large n and for every t>0. Then $\{q_i\}$ satisfies D.S.C. with every nonincreasing $\{f(q_i)\}$.

Using Theorem 1 and a new estimation for the function

$$\varphi_q(x) = \sum_{\substack{i \le x \\ (i, q) = 1}} 1 \tag{3}$$

we can find new sequences $\{q_i\}$ which satisfy D.S.C. Put

$$d_{ij} = (q_i, q_i), q_{ij} = q_i q_i / d_{ij}^2$$

Theorem 2. If

$$\sum \frac{\log^2 q_{ij}}{q_{ij}} \frac{\varphi(q_i)}{q_i} \frac{\varphi(q_i)}{q_j} < +\infty$$
 (4)

then $\{q_i\}$ satisfies D.S.C. for every $\{f(q_i)\}$.

Proof. By [1, Lemma 8] a number of pairs of positive integers x, y which satisfies (1) and

$$\frac{x}{q_i} - \frac{y}{q_i} = \frac{a}{d_{ii}q_{ii}}$$

is not greater than

$$\varphi(d_{ij}) \frac{\varphi(d_{ij}^o)}{d_{ij}^o} \frac{(a, d_{ij}^o)}{\varphi((a, d_{ij}^o))}$$

where $(a, q_{ij}) = 1$ and

$$d_{ij}^o = \prod_{\substack{p \setminus d_{ij} \\ p \times q_{ij}}} p$$

From it

$$N(q_{i}, q_{j}, t) \leq \varphi(d_{ij}) \frac{\varphi(d_{ij}^{o})}{d_{ij}^{o}} \sum_{\substack{a \leq td_{ij}q_{ij} \\ (a, q_{ij}) = 1}} \frac{(a, d_{ij}^{o})}{\varphi((a, d_{ij}^{o}))} =$$

$$= \varphi(d_{ij}) \frac{\varphi(d_{ij}^{o})}{d_{ij}^{o}} \sum_{d \mid d_{ij}^{o}} \frac{|\mu(d)|}{\varphi(d)} \sum_{\substack{a \leq td_{ij}q_{ij}/d \\ (a, q_{ij}) = 1}} 1$$
(5)

Further we have a need of a good estimation of the function $\varphi_q(x)$. Denote

$$\varphi_q(x) = \prod_{\substack{p > x \\ p \setminus q}} p$$

where p are prime numbers.

Lemma 1.

$$\varphi_q(x) \leq c_0 x \frac{\varphi(q)}{q} \frac{q(x)}{\varphi(q(x))}$$
(6)

for every positive x and integer q. If $x \ge \log q$ then

$$\varphi_q(x) \leq c_0 x \, \frac{\varphi(q)}{q} \tag{7}$$

If $2 \le x \le \log q$ and $q \ge 3$ then

$$\varphi_q(x) \le c_0 x \frac{\varphi(q)}{q} \frac{\log \log q}{\log x}$$
 (8)

Proof. Let $x \ge p$ for every prime $p \setminus q$. Then, see [2, p. 105], (7) is true. Always, if $i \le x$ then

$$\left(i,\prod_{\substack{p\leq x\\p\setminus q}}p\right)=1 \Leftrightarrow (i,q)=1$$

(6) follows from it. By [5, p. 353] we have

$$\prod_{\substack{p \mid q \\ p \geqq \log q}} \left(1 - \frac{1}{p}\right)^{-1} \leqq c_0$$

for every q. (7) follows from it. Using Mertens theorem we have (8).

We note that in this paper c_0 denotes a positive absolute constant and c_1 , c_2 , c_m , c_m' positive constants where the same letter way have different meaning.

Now, from (5) and (6) we have

$$N(q_i, q_j, t) \leq \varphi(d_{ij}) \frac{\varphi(d_{ij}^o)}{d_{ii}^o} c_0 t d_{ij} q_{ij} \frac{\varphi(q_{ij})}{q_{ii}} A$$
 (9)

where

$$A = \sum_{\substack{d \land d_{ij}^{n} \\ x = 1d_{i}, a_{ij}/d}} \frac{|\mu(d)|}{\varphi(d)d} \frac{q_{ij}(x)}{\varphi(q_{ij}(x))}$$

Denote

$$x_{ij} = td_{ij}q_{ij}$$

From (9) and by equality

$$\frac{\varphi(d_{ij})}{d_{ij}}\frac{\varphi(d_{ij}^o)}{d_{ij}^o}\frac{\varphi(q_{ij})}{q_{ij}} = \frac{\varphi(q_i)}{q_i}\frac{\varphi(q_j)}{q_j}$$

immediately follows

$$N(q_i, q_j, t) \leq c_0 t \varphi(q_i) \varphi(q_j) \frac{q_{ij}(x_{ij})}{\varphi(q_{ij}(x_{ij}))} \sum_{d \leq d_{ij}^o} \frac{|\mu(d)|}{\varphi(d)d} B$$
 (10)

where

$$B = \prod_{x$$

If $x \ge 2$ then by Mertens theorem

$$B \leq c_1 \frac{\log x_{ij}}{\log x} = c_1 \left(\frac{\log x + \log d}{\log x} \right) \leq c_1 \left(1 + \frac{\log d}{\log 2} \right)$$

If x < 2 then $x_{ij} < 2d$. Hence

$$B \leq c_2 \log 2d$$

In both cases the sum from (10) is not greater than an absolute positive constant. Summary

Theorem 3.

$$N(q_i, q_j, t) \leq c_0 t \varphi(q_i) \varphi(q_j) \frac{q_{ij}(x_{ij})}{\varphi(q_{ij}(x_{ij}))}$$

Let us denote the following interval

$$I_{ij} = \left[\frac{1}{d_{ij}q_{ij}}, \frac{\log q_{ij}}{d_{ij}q_{ij}}\right]$$

From Theorem 3 and Lemma 1 immediately follows

Theorem 4. If $t \notin I_{ij}$ then

$$N(q_i, q_j, t) \leq c_0 t \varphi(q_i) \varphi(q_j)$$
(11)

If $t \in I_{ij}$ then

$$N(q_i, q_j, t) \leq c_0 t \varphi(q_i) \varphi(q_j) \frac{\log \log 3 q_{ij}}{\log 2 t d_{ij} q_{ij}}$$
(12)

Let us return to the proof of Theorem 2 now. Using conditions $t \notin I_{ij}$ or $t \in I_{ij}$ we can divide the sum $\sum N(q_i, q_j, t)$ $(m < i, j \le n)$ into two parts. By (11) the first part is not greater than the first term from (2). By (12) (or again by (11)) if $t = \log q_{ij}/d_{ij}q_{ij}$ then

$$N(q_i, q_j, t) \leq c_0 \frac{\log q_{ij}}{d_{ij}q_{ij}} \varphi(q_i)\varphi(q_j)$$

Using Cauchy inequality

$$\sum_{t \in I_{ij}} N(q_i, q_j, t) \leq c_0 \sum \sqrt{\varphi(q_i)\varphi(q_j)} \frac{\log q_{ij}}{d_{ij}q_{ij}} \sqrt{\varphi(q_i)\varphi(q_i)} \leq$$

$$\leq c_0 \Big(\sum_{t \in I_{ij}} \varphi(q_i) \Big) \sqrt{C}$$
(13)

where C is a partial sum of the convergent series (4) for $m < i, j \le n$. Thus (13) is the second term from (2). The proof is finished.

Some consequences

Theorem 6. If

$$\sum \frac{\varphi(q_i)}{q_i} < + \infty$$

then $\{q_i\}$ satisfies D.S.C. for every $\{f(q_i)\}$.

Theorem 7. Let $\{q_i\}$ be a sequence of relative primes positive integers. Then $\{q_i\}$ satisfies D.S.C. for every $\{f(q_i)\}$.

Proof. Let us divide the sequence $\{q_i\}$ into two subsequences such that the first contains every prime q_i and the second contains all the remaining ones. The first subsequence satisfies Duffin—Schaeffer's theorem [4, Theorem I]. For the second subsequences we have

$$\sum \frac{\log^2 q_i}{q_i} < + \infty$$

because every q_i contains two primes. From it follows (4) and therefore it again satisfies D.S.C.

Further we shall give two new criterions for sequences $\{q_i\}$ which satisfy D.S.C.

Theorem 8. Let $\{t^*\}$ be a finite sequence of all distances between neighbouring rational numbers from the interval [0, 1] which denominators (in a canonical form) are contained in the sequence $\{q_i\}_{i\leq n}$. Let there for every sufficiently large n exist a finite sequence $\{t_i\}$ of positive real numbers such that

$$t_i \leq t^*$$

for every i and

$$\sum_{t_i \le t} t_i \le c_0 t^2 \left(\sum_{i \le n} \varphi(q_i) \right)^2$$

for every t > 0.

Then the sequence $\{q_i\}$ satisfies D.S.C. with every nonincreasing $\{f(q_i)\}$.

Let $N(\Sigma)$ denote the number of terms of indicated sum Σ .

Theorem 9. Let K be a fixed positive integer. Let there for infinitely many m exist a decomposition $\{q_i\}_{m< i}$ into K subsequences $\{q_i\}_{m< i}^i$, j=1, 2, ..., K (for other m this decompositions are independent), for which there exist positive constants c_m^j and positive functions F_m^j such that

$$c_m^j \to 0 \quad \text{for} \quad m \to \infty$$
 (14)

$$F_m^i$$
 is nondecreasing and $F_m^i(u) \to 0$ for $u \to 0$ (15)

$$N(\Sigma) \leq \left(\sum_{m < i \leq n} \varphi(q_i)\right) F_m^j(\Sigma) + c_m^j \left(\sum_{m < i \leq n} \varphi(q_i)\right)$$
 (16)

for all sufficiently large n and for every subsum Σ of the sum of all distances between neighbouring rational numbers from the interval [0, 1] which denominators are contained in $\{q_i\}_{m< i\leq n}^i$ (or more precisely for every sequences of subsums $\{\Sigma_n\}$ for which $\Sigma_n \geq c > 0$).

Then the sequence $\{q_i\}$ satisfies D.S.C. with every nonincreasing $\{f(q_i)\}$.

By theory of the paper [1] the proofs of Theorems 8, 9 follow from following two criterions for quick sequences (see [1, Definitions 2,3, Corollary 1, Parts 4,5]).

Theorem 10. Let I be a fixed finite interval of real numbers. Let $\{y_i\}$ be a positively distributed (see [1, Definition 1]), one-to-one, infinite sequence of points from I. Order the finite sequence $\{y_i\}_{i \le n}$ on the increasing sequence

$$y_{i(1)} < y_{i(2)} < ... < y_{i(n)}$$

Put

$$\{t_i^*\} = \{y_{i(i+1)} - y_{i(i)}\}_{i \le n}$$

Let there for every sufficiently large n exist a finite sequence $\{t_i\}$ such that

$$0 < t_i \le t^* \tag{17}$$

and

$$\sum_{t \le t} t_i \le c_0 t^2 n^2 \tag{18}$$

Then $\{y_i\}$ is quick in I.

Theorem 11. Let $\{y_i\}$ be a positively distributed sequence. Let there for infinitely many m exist a decomposition $\{y_i\}_{m< i}$ into K subsequences $\{y_i\}_{m< i}^i$, j=1, 2, ..., K, for which ther exist positive constants c_m^i and positive functions F_m^i which satisfy (14), (15) and

$$N(\Sigma) \leq (n-m)F_m^j(\Sigma) + c_m^j(n-m)$$

for all sufficiently large n and for every subsum Σ of the sum Σt^* .

Then $\{y_i\}$ is quick.

Proof of Theorem 10. Let $\{t_i\}$ be a finite nondecreasing sequence of positive real numbers for which

$$\sum_{i \le i} t_i \le c_1 t^2 \tag{19}$$

for every t > 0. (19) is equivalent to

$$\sum_{i \le i} t_i \le c_1 t_i^2$$

for every $t_i \in \{t_i\}$. For $\{t_i\}$ we can construct a finite sequence $\{t_i'\}$ such that $\{t_i'\}$ is a positive root of the equation

$$c_1 t_i'^2 - t_i' - (t_1' + t_2' + \dots + t_{i-1}') = 0$$
 (20)

Clearly

$$t_i' \leq t_i \tag{21}$$

for every i and by (20) we have

$$1 = \frac{\sqrt{c_1 t_i'}}{\sqrt{t_1' + t_2' + \dots + t_i'}} \tag{22}$$

For i=1, 2, ..., j the sum of the right hands of (22) is a lower integral sum of the decreasing function $g(u) = \sqrt{c_1}/\sqrt{u}$ on the interval $[0, t_1' + t_2' + ... + t_j']$ which is divided into following intervals $[0, t_1'], [t_1', t_1' + t_2'], [t_1' + t_2', t_1' + t_2' + t_3']$... Thus this sum is not greater than the integral of g(u) on $[0, t_1' + t_2' + ... + t_j']$. By computation we obtain

$$j \le 2\sqrt{c_1} \sqrt{t_1' + t_2' + \dots + t_1'}$$
 (23)

Let Σ be a subsum of the sum Σt_i . Since $\{t_i\}$ is nondecreasing and satisfies (21), it follows from (23)

$$N(\Sigma) \le 2\sqrt{c_1} \sqrt{\Sigma} \tag{24}$$

Also (24) is true if Σ is a subsum of the sum Σt^* , where $t_i \le t^*$ for every i. Now, let $\{t_i\}$, $\{t^*\}$ be sequences from Theorem 10 which satisfy (17), (18). Put in (24) $c_1 = c_0 n^2$. Then

$$N(\Sigma) \leq n2\sqrt{c_0}\sqrt{\Sigma}$$

for every subsum Σ of the sum Σt_i^* . Thus $\{y_i\}$ satisfies the conditions in [1, Theorem 1]. Hence $\{y_i\}$ is quick.

Proof of Theorem 11. Theorem 11 is a generalization of [1, Theorem 2] and by its proof and notations

$$N(n) \ge \max_{1 \le j \le K} \left\{ P^{j}(n) - m - (n - m) F_{m}^{j} \left(\sum_{i > k} |I_{i}| \right) - c_{m}^{j}(n - m) \right\}$$
 (25)

where $P^{i}(n)$ denotes the number of terms from $\{y_{i}\}_{i\leq n}^{i}$ for which

$$y_i \in I - \bigcup_{i > k} I_i$$

By assumption $\{y_i\}$ is a positive distributed sequence, then for all sufficiently large n

$$P^{i}(n) \geq \frac{c}{K} |I - \cup I_{i}| n = c_{1}n$$

for any j, $1 \le j \le K$, (j is dependent on n). By (14) for sufficiently, large m, $c_m^j \le c_1/4$ for every j. By (15) for this m we can find k such that

$$F_m^i \left(\sum_{i>k} |I_i| \right) \leq \frac{c_1}{4}$$

for every j. Thus by (25) $N(n) \ge nc_1/2$.

BIBLIOGRAPHY

- [1] Strauch, O.: Duffin—Schaeffer conjecture and some new types of real sequences, Acta Math. Univ. Comen., 40—41, 1982, 233—265.
- [2] Halberstam, H.—Richter, H. E.: Sieve methods. Academic Press, London 1974.
- [3] Sprindžuk, V. G.: Metričeskaja teorija diofantovych približenij. Izd. Nauka, Moskva 1977.
- [4] Duffin, R. J.—Schaeffer, A. C.: Khintchine's problem in metric diophantine approximation. Duke Math. J., 8, 1941, p. 243—255.
- [5] Hardy, G. H.-Wright, E. M.: An introduction to the theory of numbers. Oxford 1954.

Author's address:

Received: 25. 4. 1981

Oto Strauch,

Katedra algebry a teórie čísel,

Matematicko-fyzikálna fakulta UK Matematický pavilón,

Mlynská dolina

842 15 Bratislava

РЕЗЮМЕ

НЕКОТОРЫЕ НОВЫЕ ПРИЗНАКИ ДЛЯ ПОЛЕДОВА ТЕЛЬНОСТЕЙ УДОВЛЕТВОРЯЮЩИХ ГИПОТЕЗЕ ДАФФИНА-ШАФФЕРА, I.

Ото Штраух, Братислава

Пусть $\{q_i\}$ простая последовательность натуральных чисел и $\{f(q_i)\}$ -последовательность положительных действительных чисел. По гипотезе Даффина—Шаффера из расходимости ряда $\Sigma \varphi(q_i)f(q_i)$ (φ — функция Эйлера) следует что диофантого неравенство

$$\left|u-\frac{p}{q_i}\right| < f(q_i)$$

имеет решение p для почти всех u, для бесконечного количества q_i , $(p,q_i)=1$. В этой работе показано, что гипотеза Даффина—Шаффера имеет место если $(q_i,q_j)=1$, $i\neq j$, или если ряд $\Sigma \varphi(q_i)/q_i$ еходится.

SÚHRN

NIEKTORÉ NOVÉ KRITÉRIÁ PRE POSTUPNOSTI, KTORÉ VYHOVUJÚ DUFFIN—SCHAEFFEROVEJ HYPOTÉZE, I.

Oto Strauch, Bratislava

V práci je ukázané, že hypotéza Duffin—Schaeffera platí, ak postupnosť $\{q_i\}$ sa skladá z po dvoch nesúdeliteľných čísel, alebo ak konverguje rad $\Sigma \varphi(q_i)/q_i$. Ďalej sú tu odvodené dve nové kritériá pre platnosť hypotézy.

