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SOME NEW CRITERIONS FOR SEQUENCES WHICH SATISFY
DUFFIN—SCHAEFFER CONJECTURE, 1.

OTO STRAUCH, Bratislava

In [4, p. 255], Duffin and Schaeffer gave following conjecture (abbreviated
D.S.C):

Let {q:} be a one-to-one sequence of positive integers and {f(q;)} be
a sequence of positive real numbers. If the series

= @(q)f(a:)

is divergent (@ stands for Euler totient function), then for almost all u the
diophantine inequality

u-2|<f(a)

has for infinitely many i an integer solution p with g.c.d. (p, g¢.)=1.
In [1] we proved following criterion for D.S.C., see [1, Theorem 5 and Proof of
Theorem 14]:

Let N(q:, g;, t) denote the number of pairs of positive integers x, y for which

Oct<dgy
q q;
0<x<g, 0<y<gq;, (x,q)=(y,q)=1 (1)

Theorem 1. Let there for infinitely many positive integer m exist positive
constants Cn., ¢, with c¢,,—0 for m— o, such that

> N(q«-,q,-,t)§cmt( > w(q:))z+cn'.( b3 qv(qi)) ()

m<i, jSn m<isn m<isn
for all sufficiently large n and for every ¢t >0. Then {q;} satisfies D.S.C. with every

nonincreasing {f(q:)}.
Using Theorem 1 and a new estimation for the function

%)= 3 1 (3)
(i.q)=1
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we can find new sequences {q:} which satisfy D.S.C. Put

di=(q:., 9)), q;=qq;/d;
Theorem 2. If

» log” g 9(q) ®(a) _ , (4)
qii qi q;
then {q:} satisfies D.S.C. for every {f(qi)}.
Proof. By [1, Lemma 8] a number of pairs of positive integers x, y which
satisfies (1) and
X y_ a

q q; B diq;;
is not greater than

(d}) _(a.di)

@
@(dy) d; o((a, dy))

where (a, g;)=1 and

di=1] p

P\
P Xa;j
From it
o(d; (a, di
N(q.. g, D= @(d;) e dN =
(q 4 ) (p( !) d,‘,’ a=tdiq;; (p((a’ dfi))
(a. gij)=1
o(d; lu(d)]
= dij o ! g
@ (d;) d; dgz;; @(d) ué'%;iu‘“ ®

(a. gi)=1

Further we have a need of a good estimatio‘n of the function @,(x). Denote

e.()=[]p
P
where p are prime numbers.
Lemma 1.
<, 2@ _a(x) 6
TP IE)) ©)

for every positive x and integer q. If x =log g then
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@, (x)=cox (pflq) (7
If 2=x=log q and g =3 then
<. . 9(q)loglog g
v, (x)Sax £ D8 (8)

Proof. Let x=p for every prime p\q. Then, see [2, p. 105], (7) is true.
Always, if i=x then

(i,!;[xp)=l <« (i,q)=1
P\q

(6) follows from it. By [5, p. 353) we have

1 -1
1T ( 1 —-—) =
r\q 14
p=log q

for every q. (7) follows from it. Using Mertens theorem we have (8).

We note that in this paper ¢, denotes a positive absolute constant and ¢, ¢,
Cm, Cm poOSitive constants where the same letter way have different meaning.

Now, from (5) and (6) we have

dl ij
N(qn q], t)< (dll) (p(da ,) C('td:yqu (p(qq ) (9)

where

d)| _gi(x)

A= S |!‘( j
Ao o(d)d o(g,(x))
x=ld,-,-q,,-/d
Denote
X = tdiq;;

From (9) and by equality
@(d;) o(d;) (P(‘Iii)= ?(a) 9(q)

d,',' d:; qij qi 4
immediately follows
. x y
N(qiv qi, t)§C()t(p(q,')(p(q]) q’(x’) l”( )I B

(p(ql;(xu)) d\d;° (p(d)d (10)
where
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If x=2 then by Mertens theorem

B=c, log Xi_ ., (log x +log < (] +Iog d)
log x log x log 2

If x <2 then x; <2d. Hence
B=c;log2d

In both cases the sum from (10) is not greater than an absolute positive constant.
Summary

Theorem 3.
N(g. 4. S cg(a)p(q) —2Cu)
@(qi(x;))
Let us denote the following interval
L ___[ 1 log fI-'i]
Yo ldigy” digy
From Theorem 3 and Lemma 1 immediately follows

Theorem 4. If t¢ I, then

N(q:, g;, )= cotp(q:)9(q;) (11)
If te I; then

log log 3g;

N(a;, g;, 1) = coto(q:) 9(q;) log 2td,q,
1Y)

(12)

Let us return to the proof of Theorem 2 now. Using conditions ¢ ¢ I or 1 € I;
we can divide the sum ZN(q;, g;, t) (m<i, j=n) into two parts. By (11) the first
part is not greater than the first term from (2). By (12) (or again by (11)) if
t=log q;/d;q; then

log q;
N(qi, g5, )= co %%’ o(q)9(q)

Using Cauchy inequality ‘

1 i
S N(ai 4 D=0 S V(@) e (@) ‘;g—: Vola)o(q) s

tel;

=o( 3 ea)Ve (13)

m<isSn
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where C is a partial sum of the convergent series (4) for m<i, j=n. Thus (13) is
the second term from (2). The proof is finished.
Some consequences

Theorem 6. If
s Ky

then {q;} satisfies D.S.C. for every {f(q)}.

Theorem 7. Let {q;} be a sequence of relative primes positive integers. Then
{q:} satisfies D.S.C. for every {f(q:)}.

Proof. Let us divide the sequence {q;} into two subsequences such that the
first contains every prime g; and the second contains all the remaining ones. The
first subsequence satisfies Duffin—Schaeffer’s theorem [4, Theorem I]. For the
second subsequences we have

> log'ai _ ,
because every g; contains two primes. From it follows (4) and therefore it again
satisfies D.S.C.

Further we shall give two new criterions for sequances {q;} which satisfy
D.S.C.

Theorem 8. Let {t*} be a finite sequence of all distances between neighbour-
ing rational numbers from the interval [0, 1] which denominators (in a canonical
form) are contained in the sequence {q;}:s.. Let there for every sufficiently large n
exist a finite sequence {t;} of positive real numbers such that

L=t
for every i and

Y t=cof (; (p(q;))z

L=t

for every t>0.

Then the sequence {q;} satisfies D.S.C. with every nonincreasing {f(q.)}.

Let N(Z) denote the number of terms of indicated sum =.

Theorem 9. Let K be a fixed positive integer. Let there for infinitely many m
exist a decomposition {q;}n<: into K subsequences {qi}}n<i, j=1, 2, ..., K (for
other m this decompositions are independent), for which there exist positive
constants ¢/, and positive functions F/, such that

ch—>0 for m o> » (14)

F;, is nondecreasingand F/)(u)—0 for u—0 (15)
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NE=( 3 ea)Fi@+ci( S o) (16)

<i=

for all sufficiently large n and for every subsum X of the sum of all distances
between neighbouring rational numbers from the interval [0, 1] which de-
nominators are contained in {q:}).<is. (or more precisely for every sequences of
subsums {Z,} for which Z,=c¢>0). :

Then the sequence {q;} satisfies D.S.C. with every nonincreasing {f(q;)}.

By theory of the paper [1] the proofs of Theorems 8, 9 follow from following
two criterions for quick sequences (see [1, Definitions 2,3, Corollary 1, Parts 4,5]).

Theorem 10. Let I be a fixed finite interval of real numbers. Let {y:} be
a positively distributed (see [1, Definition 1]), one-to-one, infinite sequence of
points from I. Order the finite sequence {y:}:=, on the increasing sequence

Vi <Yiy<... < Yitm)
Put
{7} ={Yigen = Yin}izn
Let there for every sufficiently large n exist a finite sequence {t} such that
0<t=t% 17)
and

2 t,~§Cntznz (18)

Then {y;} is quick in I.

Theorem 11. Let {y;} be a positively distributed sequence. Let there for
infinitely many m exist a decomposition {y, }.<; into K subsequences {y;},.<. j=1,
2, ..., K, for which ther exist positive constants c, and positive functions, F., which
satisfy (14), (15) and

N(E)=(n—-m)F.(Z)+ci(n—m)

for all sufficiently large n and for every subsum X of the sum X t*.

Then {y;} is quick.

Proof of Theorem 10. Let {#} be a finite nondecreasing sequence of positive
real numbers for which

S uSaf (19)

e
for every t>0. (19) is equivalent to

Zti§c|t§

i=j
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for every ;€ {t.}. For {#} we can construct a finite sequence {t/} such that {¢} is
a positive root of the equation

at’P—ti—(ti+t+...+t._)=0 (20)
Clearly
tisty (21)

for every i and by (20) we have

Viti+t+ ...+t

Fori=1, 2, ..., j the sum of the right hands of (22) is a lower integral sum of the

decreasing function g(u)=Vc,/Vu on the interval [0, ti+t5+ ...+ ] which is
divided into following intervals [0, t{], [t], t + t3], [ti + t5, t; -+ t5+td] ... Thus this
sum is not greater than the integral of g(u) on [0, ¢t{ + t;+ ... + t/]. By computation
we obtain

jS2Ve, Vii+ti+ .+t (23)

Let X be a subsum of the sum Xt,. Since {t} is nondecreasing and satisfies (21),
it follows from (23)

N()=2Ve, V= (24)

Also (24) is true if = is a subsum of the sum Zt*, where , =t* for every i.
Now, let {t}, {t¥} be sequences from Theorem 10 which satisfy (17), (18). Put
in (24) ¢, =con’. Then

NE)=n2VeVE

for every subsum X of the sum Zt*. Thus {y;} satisfies the conditions in (1,
Theorem 1]. Hence {y.} is quick.

Proof of Theorem 11. Theorem 11 is a generalization of [1, Theorem 2] and
by its proof and notations

N(n)Z max {P’(n) —m—(n—m)Fj (Zz IE]) = ch(n - m)} (25)

where P'(n) denotes the number of terms from {y,}!s, for which
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yiel—- U L
i>k
By assumption {y;} is a positive distributed sequence, then for all sufficiently large
n

P’(n)é% [I-ULln=cn

for any j, 1=j=K, (j is dependent on n). By (14) for sufficiently, large
m, ¢, = c,/4 for every j. By (15) for this m we can find k such that

F;’.(ZILI)§%

i>k

for every j. Thus by (25) N(n)Z nc,/2.
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PE3IOME

HEKOTOPBIE HOBBIE IMPU3HAKHU TS MOJIENOBA TEJILHOCTEH
YOOBJIETBOPSAIOMUNX THIIOTE3E NJA®PPHUHA-IIAPDEPA, 1.

Oro llITpayx, Bpatucnasa
IMycts {q;} mpocTast MoOCNENOBAaTENLHOCTL HATYpaNbHBIX 4HCeEN H {f(g;)}-nocnenoBaTenbHOCTh
TIOJIOXHTENbHBIX AeHCTBUTENBHBIX YHcen. [To runorese Nagdduna—Illaddepa u3 pacxogumocTs paaa

2@(q)f(q:) (p — dynkums Dinepa) cienyeT 4To THO(AHTOrO HEPABEHCTBO
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p‘

u——1<f(q)

qi

MMEET pEeIeHHe p 1A MOYTH BCEX U, IS GECKOHEYHOro KonmdecTsa g, (p, q;)=1. B atoit pa6ote

nokasato, 4to runoresa [lapduna—Illacdpepa umeer mecto ecmm (q;, q)=1, i#j, unu ecnn psg
Z@(q.)/ q; cxoauTes.

SUHRN

NIEKTORE NOVE KRITERIA PRE POSTUPNOSTI,
KTORE VYHOVUJU DUFFIN—SCHAEFFEROVEJ HYPOTEZE, L

Oto Strauch, Bratislava

V préci je ukdzané, ze hypotéza Duffin—Schaeffera plati, ak postupnost {g;} sa sklada z po dvoch
nesudelitelnych Cisel, alebo ak konverguje rad Z¢(q;)/q;. Dalej sii tu odvodené dve nové kritéria pre
platnost hypotézy.
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