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A COHERENCE BETWEEN THE DIOPHANTINE APPROXIMATIONS
AND THE DINI DERIVATES OF SOME REAL FUNCTIONS

OTO STRAUCH, Bratislava

Let {y.} be any one-to-one sequence of real numbers and let {z,} be any
sequence of positive real numbers. Here the index n passes through the set of all
positive integers. For these {y,}, {z,} we define the real-valued function f on reals
by the following

(1) f(y.) =z, forall n and f(x)=0forall x & {y,}.

This f is a generalization of the well known Riemann’s elementary function.
The following trivial coherence holds between the Dini derivates of f at x and the
inequality

(2) [~y <z.lz

Theorem 1. If the function f is defined by (1) and z,— 0, then it is true for its
Dini derivates that:

D*f(x)= sup {z>0; (2) & y,>x holds for infinitely many n},
D_f(x)= —sup {z>0; (2) & y, <x holds for infinitely many n)
for all x ¢ {y,}, where sup #=0 and —(+ @)= —o (also D f(x)=D,f(x)=0,

D_f(y.) =D f(y.)= + %, D.f(y,)= D*f(y,) = — »).
Proof. It follows immediately from
f)—fy,) _ z,

Zk,
= >75300<y, —x<
X = Yk, Ve, — X Yea Z

and from it that if the right hand holds for all k,, then Yr, =X, since z,,—0.
Evidently, Theorem 1 is true also for {z,} for which Z, — 0 only for every bounded
{yx,} and also for {z,} for which there exists a constant ¢ >0 such that {Yn; 2. =c}
is dense — in this case D*f(x), D_f(x) are infinite and it must be D_f(y.)= + oo,
D™ f(y.) = — .
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Le., if the function f is defined by (1) and z,—0, then it is true:

f has at x € {y,} a derivative necessarily equal to zero if and only if for every
2 >0 the inequality (2) holds only for finitely many n.

f hasat x¢é{y,} atleastone Dini derivate infinite if and only if for every z >()
the inequality (2) holds for infinitely many n (it is true also for bounded {z,}).

Now, using Theorem 1, we can prove some theorems of the inequalities (2)
such that we apply on the function f, which is defined by (1), some general
theorems of the Dini derivates. We shall do it in the Part I. of this paper.

On the other hand we can prove some theorems on the Dini derivates of
functions f, which are defined by (1) and where {y, } is a rational sequence, such
that we apply on the inequalities (2) some theorems of the diphantine approxima-
tions. We shall do it in the Part II. of this paper.

This method is used in the papers [ |—S5, 6—p. 374] and also in an unpublished
paper of T. Salat. We note that these papers are not containing the elementar
Theorem | in an explicit form.

For example, from Theorem 1 and from the following Theorems 2—35 follows
immediately Theorem 6.

Theorem 2 (W. H. Young [7]). For any real function f the set of points at
which f has at least one Dini derivate infinite is a G, set.

Theorem 3 (W. Sierpinski and A. N. Singh [8]). If the set of points of
discontinuity of a real function f is dense, then the sets A*. A~ are also dense and
they have the power c. Here A* (A ") denotes the set of points at which f has at
least one right (left) Dini derivate infinite.

Theorem 4 (H. Lebesgue [9]). If a real function f has a finite variation on
every finite interval, then f has a finite derivative almost everywhere.

Theorem 5 (O. Hajek [10]). For any real function f. the extreme bilateral
derivatives f’, f' must be of Baire class 2.

Theorem 6. For all {y,}, {z.}, z.—0 it is true:

(3) The union

{y.}u{x; for every z>0, (2) holds for infinitely many n)
is a G, set and hence if {y,} is dense, then the set

{x; there exists z>0, (2) holds only for finitely many n)
is of the first category.

(4) 1If {y.} is dense, then the following sets
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{x; for every z>0, (2) & y,>x holds for infinitely many n}
{x; for every z>0, (2) & y.<x holds for infinitely many n}

are also dense and they have a power c.

(5) If the series £z.(y. € I) converges for every finite interval I, then the set
{x; there exists z>0, (2) holds for infinitely many n}

is a nullset.

(6) For every a>0 the following sets are Gi,.

{x ; there exists z, 0 <z <a, (2) & y. > x holds only for finitely many n} — {y, },
{x; there exists z, z>a, (2) & y.>x holds for infinitely many n}u{y,}.

Similarly for y, <x.

We note that we can prove Theorem 6 directly, without to use the Theorems
1—5 and moreover by a short way and for any {z,} and {v.} need not be
one-to-one (and in the definitions of the sets of (3), (6) the sequence {y,} need not
be taken into consideration). It follows from this that applying the general
Theorems 2—S5 on the special function f, which is defined by (1), we choose from
their proofs only a trivial part. From the following Denjoy—Young—Saks
Theorem, which have a sufficiently complicated proof, we shall give a nontrivial
result.

Theorem 7 (Denjoy—Young—Saks, see [11, p. 30]). For any real func-
tion f, with the possible exception of a nullset, the set of all reals can be decom-
posed into four sets:

Xi={x; D_f(x)=D"f(x)=D.f(x)= D" f(x) # * o},

X;={x; D f(x)=D.f(x)# £, D_f(x)= —o, D*f(x)= +»},
Xi={x; D_f(x)=D"f(x)# £, D f(x)=+0o, D,f(x)=—®},
Xi={x; D_-f(x)=D.f(x)= —», D f(x)=D"f(x)= + o}.

Theorem 8. For all {y.}, {z.}, z.— 0, with the possible exception of a nullset, the
set of all reals can be decomposed into two sets:

Xi={x; for every z>0, (2) holds only for finitely many n},
X;={x; for every >0, (2) & y,>x holds for infinitely many »n and also (2) &
y. <x holds for infinitely many n}.

Proof. For every function f, which is defined by (1) and z,—0, it is
X;=X,=0 (if z.-»0, then |X;|=|X,|=0 only). By Theorem 1, X, = X|—{y.}
and X;=X;—{y.}. Thus, the proof is finished.

I.e.the following sets are nullsets;

{x; there exists z' >0, (2) holds only for finitely many n and there exists z” >0, (2)
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holds for infinitely many n},

{x; there exists z>0, (2) & y, > x holds only for finitely many n and (2) & y, <x
holds for infinitely many n, or on the contrary)}

forall {y.}, {z.}, z,—0, and also the following sets are equal, except a nullset :

{x; f, which is defined by (1) from {y, }. {z.}, has at least one Dini derivate infinite
at x},

{x; for z=1, (2) holds for infinitely many n},

{x; for z =2z, (2) holds for infinitely many n},

{x; for every z>0, (2) holds for infinitely many n},
{x; there exists z>0, (2) holds for infinitely many n},
{x; for z=1, (2) & y,>x holds for infinitely many n},
{x; for z=1, (2) & y,<x holds for infinitely many n}.

Similary for finite derivative and for finitely many solutions.

At the end of the Part I., we note that Theorem 8 is true also for all sequences
{y.}. {z.}, which are defined by the following:

Let {q.} be any one-to-one sequence of positive integers and let {g(q.)} be
any sequence of positive real numbers which need not satisfy. g(gq.)— 0. Then

(7) {y.} is equal to the one-to-one sequence of all rational numbers of the form
p/q., where p is an integer and p, q. are coprime. {z,} is defined such that if
y. =p/q. then z, = g(q:).

By preceding and by Gallagher’s Theorem in [12], for these {y.}, {z.}, one
of the sets X{, X’ is always a nullset. In the general case it is not true.

We note that Theorem 8 also follows directly from Lemma 6 in [16, p. 26)].

For any {q.}, {9(q.)} we define the real-valued function f on reals by the
following:

(8) f(p/q.)=g(q.,) for all rational p/q., p, q. are comprime, and f = () otherwise
(i.e., f is defined by (1) from {y,}, {z.}, which are defined by (7)).

It follows immediately from Theorem 1 that the following two conjectures are
equivalent:

Conjecture 1 (R.J. Duffinand A. C. Schaffer[13]). For all sequences {y.},
{z.}, which are defined by (7), it is true : For almost all x the inequality |x — y.| <z,
holds for infinitely many n, or for almost all x the inequality |x — y, | < z, holds only
for finitely many n, according as Xz.(y, € I) diverges or converges for every finite
interval I of a positive length, respectively.

Conjecture 2. For every function f, which is defined by (8), it is true: For
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almost all x the function f has at least one Dini derivate infinite, or for almost all x
the function f has a zero derivative, according as Zf(x)(x € I) diverges or converges
for every finite interval I of a positive length, respectively.

Using Theorems 1,8 and the fact that the part connected with the convergence
of this series is trivially true (by well known Borel—Cantelli Lemma), we can
write the preceding conjectures by following:

For all sequences {y.}, {z.} which are defined by (7) and for every function f
which is defined by (1) from these {y,}, {z.}, it is true: If the series

2z.(y. €[0, 1D=Zf(x)(x €[0, 1) =Z¢(q.)9(q.) (n=1,2,....)

(where @ denotes the Euler’s function) diverges, then the sets {x; for every z>0,

(2) & y.>x holds for infinitely many n and also (2) & y, <x holds for infinitely
many n},

{x;D"f(x)=+o, D_f(x)= — )}

have a full measure.

For example, the assertion of the Duffin—Schaeffer’s conjecture is true for
following sequences {q.}, {g(q.)}:

(9 {a.}={1,2,3, ...}, {q29(q.)} is nonincreasing. It is equivalent to the well
known Chinic¢in’s Theorem in [14].

(10) There exists a constant ¢ >0 such that

gﬁq:g(q.—)éci; ®(a)9(a)

for infinitely many n. It is the Duffin—Schaeffer’s Theorem in [13] (From it
follows (9). The condition (10) is true for {g.}, for which (g.)/q. =c>0, here
{g(q.)} is arbitrary.).

(11) {g(q.)}={c/q}}, {q.} is arbitrary. It is the Erdés Theorem in [15] (By
Theorem 8, it is sufficiently proved only for {1/q2}.).

(12) {q.) satisfies
2) <
@(qn

for all sufficiently large n, {g(q.)} is arbitrary. It is result of the author of this
paper, see [24]).
Some other results are obtained in the monograph V. G. SprindZuk [16].
Now, for any u>0 we define the real-valued function f, on reals by the
following :

(13) fu.(p/q)=1/q" for every rational p/q and f,(x)=0 for all irrational x.
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Here (and also in further) g >0, p are coprime integers. From Theorem 1 and
from the following Theorems 9—13 of diophantine approximations follows imme-
diately Theorem 14 on Dini derivates of f,.

Theorem 9 (A. Hurwitz [17]). For every z, 0<z=V5 and for every
irrational x the inequality

1
(14) 'x—£|<——z
ql zq

holds for infinitely many p, q. For x = (V5 — 1)/2, z >V/5 this inequality holds only
for finitely many p, q.

Theorem 10 (A. A. Markov [18]). If for an irrational x there exists z,
(0 <z <3 such that the inequality (14) holds only for finitely many p, g, then x is
a quadratic irrational, i.e. has a periodic continued fraction (Conversely it is not
true.).

Theorem 11. Any irrational x has bounded even (odd) partial quotients of
a continued fraction of x if and only if there exists z >0 such that the inequality
(14) holds only for finitely many p, q, p/q>x(p/q <x).

We note that from Theorems 10, 8, 6 — part (3) and from the Chinéin’s
Theorem it follows immediately that for almost all x even and also odd partial
quotients are unbounded and these x form a G, — residual set.

Theorem 12. For z =1 and for every irrational x the inequality (14) holds for
infinitely many p, q, p/q>x and it holds also for infinitely many p, q, p/q<x
(For z>1 it is not true,).

Theorem 13 (K. F. Roth [19]). Let x be an algebraic irrational number and
u>2. Then the inequality

holds only for finitely many p, q.

Theorem 14.
(15) If u<2, then (by Theorem 12) the function f, has at least one Dini derivate
infinite everywhere (just then D*f,(x)= + ®, D_f,(x)= — = at every irrational

x).

(16) The function f is not differentiable (by Theorem 12) at every x. At every
irrational x it has (by Theorems 9,12)

max {D"*f.(x), |D_fo(x)|} = V5
min {D*f,(x), |D-f-(x)|} =1
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and at x =(V5—1)/2 this maximum is equal to V5. If this maximum is smaller
than 3, then (by Markov’s Theorem) x is quadratic irrational. The function f, has
(by Chin¢in’s Theorem) at least one Dini derivate infinite almost everywhere and
D" f.(x) (D-f-(x)) is finite if and only if (by Theorem 11) x is irrational and it has
a bounded even (odd) partial quotients.

(17) If u>2, then (by Chin¢in’s Theorem) the function f, is almost everywhere
differentiable (it has a zero derivative) and (by Roth’s Theorem) it is differentiable
at every algebraic irrational x, and it has at least one Dini derivate infinite at every
Liouville’s number.

(18) Every function f has (by Theorem 1) D_f,=D f,=+o%, D.f,=D"'f, =
— o at every rational number and D.f, =D f,=0 at every irrational number.
Every function f, has (by Young’s Theorem) at least one Dini derivate infinite
everywhere, except a set of the first category.

We note that some part of this theorem is contained in [3—S5].

Again, using Theorem 1 and the following well known Theqrem 15 of
continued fractions, we can compute (Theorem 16) Dini derivates of f, at every
irrational x.

Let us denote [ao; ai, a, ..., a., ...] a continued fraction of x, {a,} are its
partial quotients, {p./q.} are its convergents and {r, } are its complete quotients.

Theorem 15. For every irrational x it is true:

sup {z>0; (14) & p/q > x holds for infinitely many p, q} =sup {z>0; (14) holds
for infinitely many p,, q., where n is odd}.

Similarly for even n and p/q<x.

Just then see [20, p. 12, 32]

.
o Foes +~—q"”'>
q ( ! q

n

Pn
qn

X —

Fn+i =[an+l; An+2, An+3, ]

51:—';[0; A, Quei, ..oy 1)

qn
Theorem 16.

D" fy(x) =lim sup (az. +[0; @zn+1, @znsz, .1 +[05 @201, G202, ..., @1])
D_f,(x)= _,l.inl sup (azas1 + [O; A2n+2, A2n+3, .-.] +[05 Gza, a2a-y, al])
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for every irrational x.
The Dini derivates of f, have also following properties:
For any irrational x let us denote

L(x)=sup {z>0:(14) holds for infinitely many p, q} =

=lim sup (a. +[0; a,+1, aniz, ... ] +[05 001, an2, ..., a)])=

=max {D+f2(X), 'foz(x)l}

Theorem 17 (A. A. Markov [18], also see [21, p. 41]).

(19) L(x)=V9—4m’ for every x which is equivalent (i.e. which has the same
continued fraction, except finitely many partial quotients) to a root of F,(x, 1),
where F,.(x, y) is a m-th Markov’s binary quadratic form, its definition see [21,
p. 31] (We note that two roots of F,.(x, 1) are equivalent, see [21, p. 34].).

(20) L(x)=V9—4m 7’ for every irrational x which is not equivalent to the roots
of F(x, Fo(x, 1), ..., F,._i(x, 1).

(21) If L(x)<3 then irrational x is equivalent to a root of some F,.(x, 1).
Let us denote

L ={L(x); x isirrational}.

The set L is caled the Lagrange’s spectrum and it has following properties:

(22) The set L is closed and L c[V5, + ®).

(23) There exists a real constant y, such that [u,, + ®)c L and [y, —u, +®©) & L
for all u>0. An estimate for yu, is 4,52 <p,=4,58, see [22, p. 7, 77, 108].

(24) There exists a real constant u,>V5 such that the Lebesgue’s measure

I[V5, wo)AL]=0 and |[V5, po+u]AL|>0 for all u>0. An estimate for p, is
3,28 <, see [22, p. 79].

(25) The set L is disjoint with the following open intervals (4\/3—(—)/7, 10), (4V6/3,
V689/8), (V12, V13), see [22, p. 22].

Using Theorem 1 and some properties of continued fractions we can compute
the Dini derivates of every function f,, u>2, by following:

Theorem 18.

Aan
u-2
2n—1

D*f.(x)=1lim sup
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D..(x) = ~lim sup 2=
for every irrational x.

Proof. For u>2 and irrational x it is again true: D*f,(x)=sup {z>0;
|x—p/q|<1/2q* & p/q > x holds for infinitely many p, q} = sup {z>0; |x — p.-
/q.| <1/zq% holds for infinitely many odd n}.

Similarly for D_f,(x), even n and p/q <x. Just then

1

v

|-
qn

and

qn--l

— — 0

q.q.
since q.-1/q. <1 and q,>2"""", see [20, p. 16]. Further

rn+|_an+l 1

u—2

qn=> qGn Tasagn’
and r,..qn *— + . Thus, the proof is finished.

We note that from the Theorems 1,11 immediately it follows that the following
conjecture are equivalent:

Conjecture 3. Every algebraic x has bounded partialy quotients.

Conjecture 4. The function f, has bounded Dini derivates at every algebraic
irrational x.

It follows from hence that it is sufficient for a proof of these conjectures to
prove only that every algebraic irrational x is contained in the set of all x at which
fu(u>2) has a zero derivate and at which f,, after a limit transition f,— f,, has
a bounded Dini derivates. By the following, it is not simplication:

Let {p., pz, ..., p.} be any finite set of primes. For this set and for any u >0, let
us define the real-valued function g, ., on reals by

(26) g...(p/q)=1/q" for every rational p/q for which p, q have prime factors
only from {p, p., ..., p.} (here ¢ >0, p are again coprime integers) and g, ,=0
otherwise.
From Theorem 1 and from the following Mahler’s Theorem of diophantine
approximations it follows immediately Theorem 20 on a derivative of g,_..
Theorem 19. (K. Mahler [23]). For all u>0 and for every algebraic
irrational x the inequality
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holds only for finitely many p, q, for which p, g have prime factors from {p,, p-, ...,
p.} only.

Theorem 20. Every function g, , has a zero derivative at every algebraic
irrational x. ‘

Now, let {p.} be a sequence of all primes. Then

27 gn.u= fuln— ®)

for every u>0. For this limit transition it is true:

(28) If u<2, then the algebraic irrationals are contained in the set of all points
which are changing (at the limit transition (27)) from the points of a zero derivative
on the points at which at least one Dini derivate is infinite.

(29) If u>2, then the algebraic irrationals are contained in the set of all points at
which a zero derivative is conserve (at the limit transition (27)).

(30) If u=2 and Conjecture 4 is true, then the algebraic irrationals are contained
in the set of all points which are changing (at the limit transition (27)) from the
points of a zero derivative on the points of bounded Dini derivates.

By Young’s Theorem, the function g, . has at least one Dini derivate infinite
everywhere, except a set of the first category and by Borel—Cautelli Lemma has
a zero derivative almost everywhere.

Supplement. Here we give a simple proof of Theorem 15.

Proof. The equality from Theorem 15 follows from the following equality
immediately

(31) min {q°|x — p/q|; p/q lies between p,_1/q.-1 and p,.1/qn+1} =

=min (qﬁ-.lx —pn—l/qn—l’, q,2.+||x —p,.+|/q,.+nl} .

Proof of (31). Clearly, if p/q lies between p._i/qa-1, Pn+1/qn+ and it is not
equal to

(32) Pkt pa
: an+qn—l
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for every integer k, 0=k =a..,, then p/q lies between two fractions in the form
(32) and (see [20], p. 24) one of them has a smaller denominator than q and it lies
more nearly to x than p/q. Thus A(p/q)=q’|x — p/q| has a minimum at p/q in
the form (32). Just then

x _pnk+pn—l

pnrn+| +pn—l _pnk+pn—l =
an +qn—l

ann+l+qn—l an+qn—l

— rn+l—k
(@uTnsr + @n-1)(guk + qn-i)’

ILe.

Aprq) =y I L) p

for p/q in the form (32), where P(k) is a quadratic polynomial for which P(k)>0
for 0=k=a,., and P(k) has a positive discriminant. From it follows

min P(k)=min {P(0), P(a..\)}.

0SkSa,.

Thus, the proof is finished.
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PE3IOME

CBsA3b MEXIY TEOPHEW TUO®AHTOBBIX IMPUBIVXEHHN
A MPOU3BOOHBIMU YUCIIAMH HEKOTOPBIX OEVCTBUTEIBHBIX ®YHKLIMH

Oro llITpayx, Bpatucnasa
B nepso#i yacTh noka3eiBaeTcs (TeopeMa 8), ¢ npUMeHeHHeM TeopeMb! JlaHxXya o MPOU3BOAHBIX
YHCJIaX, YTO /IS MOYTH BCEX BELIECTBEHHBIX YHCEN X CYLIECTBYET OMHOBPEMEHHO GECKOHEYHOE YHCIIO

PeLUEHHH, B UENbIX HECOKPATUMBIX p, q >0, cliefyIOLMX AHO(AHTOBbIX HEPABEHCTB

0<x\—§<f(q), 0<§—x<f(q),

x—§I<f(q), Ix—f <cf(q).

B BTOpOit YacTH HalieHHBI (TeopeMa 16), C IPHMEHEHHEM TEOPHH LIEMHbIX Apobeii, MPOU3BO/IHbIE
yMcna YHKUMH, KOTOpas paBHasi 1/q° B paUMOHAIBHBIX TOYKAX p/q M HYMIO B MPPALHOHALHBIX.
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SUHRN

SUVIS DIOFANTICKYCH APROXIMACII S DERIVOVATELNOSTOU
NIEKTORYCH REALNYCH FUNKCIf

Oto Strauch, Bratislava
Praca sa skladd z dvoch &asti, I, II. V &asti I sa nachddza obecni veta opisujiica tento sivis

a pomocou nej, z viet o derivovateInosti realnych funkcii, sii odvodzované vety o aproximaciach. V &asti

II si z viet o diofantickych aproximdciach odvodzované vety o derivovatelnosti $pecialnych redlnych
funkcii.
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