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ON WEAKLY CLOSED FUNCTIONS

JAROSLAV SMITAL, ELENA KUBACKOVA, Bratislava

R. F. Dickman [1] recently introduced the following notion: A real function
f: R—>R is said to be weakly closed at some point x,€ R provided for each
sequence {x},~, of points in R which converges to x, the set of members of the
sequence {f(x;}~, is closed; a function f is said to be weakly closed when it is
weakly closed at each x,e€ R. It turns out that weak closedness along with some
other properties implies the continuity of functions (cf. [1]).

The present paper is initiated by the following problem: For arbitrary
f: R—> R denote by A, the set of all x,€ R at which f is not weakly closed ; what
can be said about A;? We begin with the following two simple examples.

Example 1. Define f: R—> R by f(x)=0 for xe Q (Q is always the set of
rational numbers) and f(x)=e* otherwise. It is easily verified that A, = Q.

Example 2. Let D be a closed nowhere dense subset of R. Let g: R—[—1, 1]
be defined by g(x)=sin [1/dist (x, D)] for xe R\ D, and g(x)=0 otherwise. It
can be easily verified that A, =D.

Note that each point of A;, where f is the function from Example 1, is
a removable pcint of the weak non-closedness in the sense that by a single change
of the value of f at arbitrary z € Q we obtain a function f* which is weakly closed at
z (we put f*(z)=e%, and f*(x)=f(x) for x#z). On the other hand, for g in
Example 2, no x€ A, is a removable point of weak non-closedness.

The preceding considerations lead us to the following notion: For each
f: R— R define ess A, such that x e ess A, provided no function f': R— R such
that f'(y) = f(y) for each y+# x, is weakly closed at x. Clearly ess A;c A,.

Now the following theorems give a characterization of sets A; and ess A;. In
fact, A, can be an arbitrary set (Theorem 1), but the sets ess A, for various f can be
characterized as the F, sets (Theorems 2 and 3).

Theorem 1. For each A =R there is some f: R— R with A;=A.

Proof. If A=R put f(x)=x for xe Q, f(x)=x+1 for xe R\ Q. Clearly
A;=R.

Now assume that A# R. Let B be the interior of A, and let C= A\B. Let
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B=JI, where I, are pairwise disjoint open intervals I,=(a,, b,) or I,=9.

n=1

Denote ¢, =min {|I,|, 1}, where |I| denotes the length of I. Choose some a ¢ A
and define a function f as follows:

f(x)=x if x¢A (1)
and for xe A put
x—c,/2" if x=a, or x=»b,,
_ | @.(x) if xel,nQ,
=10 it xen0).

a otherwise,

where @,, ¥, are continuous functions I,— R with the following properties:

Both @, and y, are strictly increasing in I, ; )
@.(x)<y,(x) foreach xel,; 3)

lim @,(x)=lim y,(x)=f(a,) when x—a,+ and
lim @.(x)=lim ¥, (x)=f(b,) when x—b,-; “4)
[f(x)—x|<1/2""" foreach xel,. (5)

The last condition is satisfied when the graphs of @, and v, are near the segment
connecting the points (a,, f(a.)) and (b,, f(b,)) in the plane. Note that

f(x)#x for xeC. (6)

We show that A = A,. Let x,e€ A. If x,€ B then for some n, x,€ I, ; if x,e I, nQ let
{x:}~, be a sequence of points in I, \ Q converging to x,. Then the set of members
of the sequence {f(x;)}zo={@(x0). Y(x.), Y(x:), Y(x:), ...} is not closed, by (2)
and (3). and consequently f is not weakly closed at x,. If x,é Q the argument is
similar.

If x, € C there is a sequence x; ¢ A such that lim x; = x,. Moreover, since by (6)
f(xu) # x,, we may choose the sequence such that x; # f(x,) for each i. By (1) x, is
a limit point of the sequence {f(x;)}/~, but x, is not a member of the sequence
{f(x:)}~0, i.e. f is not weakly closed at x.

Finally assume that x,¢ A. We show that f is weakly closed at x,. Let
lim x; = x,. Let P,UP,UP;UP,=P be a decomposition of the set P of positive
integers such that n € P, iff x, é A, n € P, iff x, = a, or x, = b, for some k, n € P; iff
x,€C and n ¢P., and neP, iff x, € B. It suffices to show that

B ={f(x.); ne P}u{f(xo)}

is a closed set for i = 1, 2, 3, 4. When some P, is finite then the corresponding set B,
is clearly closed. So assume that P,, P,, P, P, are infinite sets. Then B, =

116



{x.; n € Pi}u{x,} is closed since lim x, = x, (see also (1)). Similarly B, = {a, f(x.)}
is a finite set hence it is closed. The set B. contains numbers of the «farm
Xo = Cun/2%™, and x,, and since lim x, — ciu)/2"" = x, for n—>, ne P>, B. is
closed.

Thus it remains to consider the set B,. Without loss of generality we may
assume that x, > x, for n € P, (otherwise we divide P, into two subsets). If x,=a,,
for some m, then x, eI, whenever neP, is sufficiently large, hence by (4)
lim f(x.)=f(xo)=a. for n—>o, neP, and B, is closed.

If xo is not the left-hand endpoint of some L,, let for k € P, x, € L.«). Since by
(1) f(x0)=xo, for k € P, we have

[£Cx) = fOxo) | < £ () = x| + |36 = xo (7

Now by (5), |f(xx) — x| <1/2"®~" and since lim n(k)= o for k—, k € P,, the
right-hand side of (7) tends to 0 whenever k— o, k € P,, i.e. lim f(x.) = f(x,) for
k—, keP,, and B, is closed. This finishes the proof of Theorem 1.

The following lemma will be useful in the proof of Theorem 2. Note that in the
following by limit point we always mean a finite limit point.

Lemma. Let f: R— R be a function. Then a eess A, if and only if there is
a sequence a = {a, }.-, a. € R, which converges to a, and such that the set f(a) of
members of the sequence {f(a.)}.-, has at least two different limit points which do
not belong to f(a).

Proof. When for some a = {a,},-, the set f(a) has limit points u, v ¢ f(a),
u# v, then f(a)u{f(a)} cannot be closed and hence a eess A,.

Conversely assume that each f(a) has at most one limit point which does not
belong to f(a). Let a = {a,}.-, and B = {b,} -, be sequences converging to a. Let
u be a limit point of f(a) and v a limit point of f(8) and let u ¢ f(a), v € f(B).
Assume that u# v. Consider the sequence {a,, b,, a,, b, ...} ; when we omit all
members x such that f(x)=u or f(x)=v, we obtain again an infinite sequence
y={c.}==1 such that u, v are limit points of f(y) and u, v ¢ f(y), and this is
a contradiction. Hence there is a number u, such that for each sequence a = {a, };_,
converging to a, a,#a, the set f(a)u{uo} is closed. Now it suffices to define
f*(x)=f(x) for x#a, f*(a)=u,, and we obtain a function f* which is weakly
closed at a. Consequently, a éess Ay, q.e.d.

Theorem 2. For each f: R— R the set ess A is of the type F,.

Proof. Fix some f. For each positive integers m, k, denote by M(m, k) the set
of those x € R, for which the following holds: There is a sequence a = {x,}:_,
converging to x such that the set f(a)={f(x.)}~- has two different limit points
p(x), q(x) not belonging to f(a) and such that

[p(x)—q(x)|=1/m, |p(x)|<k, |q(x)|<k.
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By Lemma clearly ess A, = U L:l M(m, k). So it suffices to show that each set

m=1 k=1
M(m, k) is closed. Let {a,}:-, be a sequence of points from M(m, k) converging
to some a. We show that a e M(m, k). For each n choose corresponding p(a,),
q(a,). Since both sequences {p(a.)};-, and {q(a.)}., are bounded there exists
a subsequence {a,.}, such that {p(a..)}™: and {q(a.,)} are convergent
sequences. We may assume without loss of generality that {a,}_, is this subse-
quence. Denote lim p(a,)=p and lim q(a,)=q. Clearly

lp—ql=1/m, |p|<k, |q|<k. (8)

Moreover, we may assume that for each n, |a —a.|<1/n, |p(a,)—p|<1/n, and

lq(a.)—q|<1/n.

Denote by a" = {x}~, a sequence converging to a, such that p(a.), q(a,) are
limit points of f(a"), and p(a.), q(a.) ¢ f(a"). For each n choose integers i(1) and
i(2) such that

la, — xiop| < 1/n, [f(xih) = p(a.)| <1/n, f(xi)#p,q,

and similarly for x;, and q(a.). Note that such i(1), i(2) must exist. Now
[xic—a| <|xi— a.| +|a, —a|<2/n
and similarly for i(2), i.e.

lim x},,=lim x{;y=a for n—>x.
Moreover

lp — (i)l < lp— p(a)|+|p(a.) - f(xin| <2/n

and similarly

<2/n.

lg — f(xi2)

Thus p, q are limit points of f(a), where a = {x/u), Xi@), X1, X2, ...} is a sequence
converging to a, and p, q ¢ f(a). By (8), ae M(m, k), q.e.d.

Theorem 3. Let A cR be a F, set. Then there is a bounded function f such
that ess A;= A, and f is continuous outside the set A.

Proof. Let G be the interior of A. Then B= A \G is a nowhere dense F, set
of dimension 0 hence there are pairwise disjoint (nowhere dense) closed sets A,
such that B=A,UA,... (cf.[2], p. 254—255). Let I,, L, ... be the connected
components of G (the sequence can be finite or infinite). For each n let @,, ¥, be
continuous functions from I, to the open interval (0, 1/n) such that @,(x) < ,(x)
for each x, and let both g,, ¥, vanish at the endpoints of I,. Define ho: R—[0, 1)
by
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@.(x) for xel,NnQ,
hn(x) = w,.(X) for xe I,, \ O,
0 for x¢G.

It is easy to see that ess A,,= G, and that h, is continuous oufside the set G.
For each n let g, be the function g from Example 2 for D= A,. Clearly
ess A,, = A,. Put h,(x)=g.(x)/3", for each x e R. Then

sup |h.(x)|=1/3". (9)
Now let )

f(x)= i h.(x) foreach xeR.

n=0

Clearly f is bounded. Let x, ¢ A, and let U, be a neighbourhood of x, disjoint
with A,, ..., Ai. Then for x € U,

f(X)= h()(X) +'Zk hi(X)= hu(X)+ d(x)s

since h(x)=0 for x ¢ A;. But by (9) |d(x)|<1/2.3* and h, is continuous at x,.
Consequently f is continuous at x, (and hence f is weakly closed at x).

Finally let x,e A. If x,€ G, then x,€ess A, cess A, since f(x) = ho(x) for
x € G. So assume that x,€ A, for some n. Then similarly as in the preceding case,
since A; are disjoint, lim h(x)=0 for i=0, 1, ..., n—1, when x—x, and
lim sup h,(x)=1/3", lim inf h,(x)=—1/3" for x— x,. So

lim sup f(x)=3"- Y 3" *=1/2.3"

A=*X0 k=1
and similarly
lim inf f(x)<-1/2.3".

x—Xq

Now it is easy to see that the range of f at x, contains the interval (—1/2.3",
1/2.3"), and hence x,€ess A;, q.e.d.
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PE3IOME
O CIIABO 3AMKHYTBIX ®YHKIUSAX
SApocnas Cmutan, Enena Ky6aukosa, Bpatucnasa

B cTaThe xapakTepH3ylOTCS MHOXECTBA TOYEK cNaboi 3aMKHYTOCTH BELLECTBEHHBIX YHKLHHA.

SUHRN
O SLABO UZAVRETYCH FUNKCIACH
Jaroslav Smital, Elena Kubackova. Bratislava

V priéci si charakterizované mnoziny bodov slabej uzavretosti realnych funkcii.
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