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ON POINTS OF ABSOLUTE CONTINUITY
OF CONTINUOUS FUNCTIONS

TIBOR SALAT, Bratislava

. The notion of points of absolute continuity of functions is introduced in the
papers [4], [5]. The point p € [a, b] is said to be a point of absolute continuity of the
function f: [a, b] >R if there is such a §>0 that the function f is absolutely
continuous on the interval I=[a — 8, a + 8]n|[a, b].

Denote by G(f) the set of all points of absolute continuity of the function
f:[a, b]>R. Put N(f)=[a, b]— G(f). It is easy to see that for an arbitrary
function f the set G(f) is open in [a, b] (in the relative topology of [a, b]=R),
hence N(f) is a closed subset of [a, b].

The properties of sets G(f), N(f) for various classes of real functions are
investigated in the paper [4]. For example it is shown there that if f is a continuous
function of finite variation in [a, b], then N(f) is a perfect set, further if f is
differentiable on [a, b], then N(f) is a nowhere dense set in [a, b]. The converse
question is studied in the paper [6], it is proved there that to an arbitrary perfect set
N c[a, b] there exists such a continuous function of finite variation in [a, b] that
N=N(f) and to an arbitrary nowhere dense set N c[a, b] there exists such
a differentiable (on [a, b]) function f that N = N(f).

In this paper we shall complete the mentioned results, we shall give a new
proof for the nowhere density of N(f) in the case of differentiable function f, we
shall generalize this result and investigate the structure of the metric space C(a, b)
of all continuous functions on [a, b] (with the sup-metric) from the viewpoint of
points of absolute continuity of functions from C(a, b). Finally we shall call
attention to corollaries of the proved results in the theory of Lipschitzian points of
functions (cf. [1]).

At first we shall give a new proof of the following result from [4]. The proof of
this result in [4] is based on a certain result from [8] about points of the uniform
differentiability of functions.

Theorem A. If fe C(a, b) is differentiable on (a, b), then N(f) is a nowhere
dense set in [a, b].

Proof. Denote by C and D the set of all continuity points and discontinuity
points of the function f’, respectively. Since f’ is a function in the first Baire class,
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the set D is a set of the first Baire category in [a, b] (cf. [9], p. 182).

If xeC, then f' is bounded in a certain neighbourhood of x. From this it
follows easily that the function f fulfils in an interval containing x the Lipschitzian
condition, hence x € G(f). Therefore C < G(f) and so

N(f)e Du{a}u{b} (1

Since D is a set of the first category, on account of (1) N(f) is such a set, too. Since
N(f) is a closed set in [a, b], it must be nowhere dense. This ends the proof.

Our method of proving Theorem A enables us to generalize the foregoing
result in such a way that the assumption of differentiability of f will be replaced by
a weaker assumption.

Theorem 1. Let fe C(a, b), let f be an approximatively differentiable func-
tion on (a, b). Then N(f) is a nowhere dense set in [a, b].

Proof. Denote by C, D the set of all continuity points and the set of all
discontinuity points of the function f,, in [a, b], respectively. Since f,, is a function
in the first Baire class ([3], p. 152), the set D is a set of the first Baire category in
[a, b].

Let x € C. Then there exists such an interval I =[x — 8, x + 8] < [a, b] that f,,
is bounded on I, i.e. there exists such a K>0 that for each y e I we have

lf((MISK (2)
For arbitrary two points x,, x, from I we have (cf. [3], p. 158):
[f(x)) = f(x)| = fer D] |21 = x2] (3)

where y is a number between x, and x,. It follows from (2), (3) that

[f(x) = f(x2)| = K]x, ~alls

hence f is Lipschitzian on I. Therefore C< G(f) and so N(f)c Du{a}u{b}.
Further we proceed similarly as in the proof of Theorem A.

The function f: [a, b]—> R is said to have the property (V) if the following
holds: Let

E={xe[a, b];f(x)—f(bg:f(a) x>bf(a)—af(b)}’

a b—a

F=|rela b]; fr) - L1 D@ 9f0)}

Then we have

D.f(x)Z Df(x) for xeE
and
D.f(x)=Df(x) for xeF,
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where

D.f(x)= lim inf fOx+ h)z—hf(x - h)’

fx+h)—f(x—h),
2h ’

Df(x)= Jim sup

similarly D.f(x), Dif(x) are defined through replacing h—0+ by h—0—.
Theorem 2. Let the function fe C(a, b) be symmetrically differentiable on
the interval (a, b) and have the property (V). Then the set N(f) is nowhere dense
in [a, b].
Proof. For each x € (a, b) there exists (finite)

f(s)(x) - 'hl_'}}, f(x + h)2—hf(x - h)

From this it is easy to see that the symmetric derivative f* of the function

feC(a, b) is a function in the first Baire class, since f°(x)=lim f,(x), where

flx)=1(x=3)

fulx)= (n=1,2,..).

S|

are continuous functions on (a, b).

Further we can proceed similarly as in the proof of Theorem 1 taking into
consideration the fact that for the symmetric derivative of a function fulfilling the
assumptions of Theorem the mean value theorem holds, too (cf. [9], Theorem 4).

In what follows we shall study the structure of the class A(a, b) of all such
functions f e C(a, b) for which G(f)+# @ holds. Put B(a, b)=C(a, b) — A(a, b).
Hence B(a, b) is the class of all such functions f from C(a, b) for which
N(f)=[a, b].

Let us remark that A(a, b) is a dense set in C(a, b) since all Lipschitzian
functions on [a, b] belong to the class A(a, b).

Theorem 3. The class A(a, b)cC(a, b) is an F,s-set of the first Baire
category in C(a, b).

Corollary. The set B(a, b)= C(a, b) is a Gsss-set, residual in C(a, b).

Proof. Denote by Q the set of all rational numbers of the interval (a, b). Lfet
qeQ, $>0, e>0, n>0. Denate by A(q, d, €, ) the class of all such functions
fe C(a, b) for which the following holds:
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If
{(an bi); i=l,2,...,m}
is an arbitrary finite system of non-overlapping intervals with
(ai, b)<[q -6, q+ 8] (i=1,2,....,m),
Z. (bi—a)=n, then ; If(b) — f(a)|=¢.

We shall show that A(q, 8, €, n) is a closed subset of the space C(a, b).

Let fie A(q,d,¢e,m) (k=1, 2, ...), let the sequence {fi}s-, converge to
a function f from C(a, b). We shall show that fe A(q, 6, €, n).

Let {(a:, b); i=1, 2, ..., m} be an arbitrary system of non-overlapping

intervals, let
(ai, b)c=[q— 96, q+ 6] (i=1,2,....m),

Zml(b,-—ai)én.

Since the convergence f, — f in C(a, b) is the uniform convergence, we can choose
such a p that for each x €[a, b] and an arbitrarily chosen v >0 we have

£
'fn(x)—f(X)|§ﬂ (4)
Then a simple estimation yields
Zml |f(b:) = f(a) ég If(b:) = £, (b)) +
(5)

+ 3156~ fl@)l + 3 1f(a) - f(a)]

Since f, € A(q, 9, €, ), the second summand on the right-hand side of (5) is not
greater than ¢. Further the first and also the third summand on account of (4) is not

€ L
greater than e Therefore we get from (5) the estimation

> < 1
;If(b.-)—f(a,-)|=£(1+;) ©

Since the inequality (6) is true for an arbitrary v >0, we get from this by v — ©

the inequality

S, 1f(b) - fla)| =S¢
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Hence fe A(q, d, €, ) and so the set A(q, 8, €, n) is closed.
It follows from the provious result that the set

is an F,,-set in C(a, b) and so
= 1
A@=U A(q.;)
is an F,,,-set in C(a, b). But obviously we have

A(a, b)=U A(q)
4eQ

and in view of the countability of Q the set A(a, b) is an F,.,-set in C(a, b).

Further, if f € A(a, b), then the function f is absolutely continuous on a certain
interval I = (a, b) and therefore it has almost everywhere in I the finite derivative
(cf. [10], p. 403). It follows from the foregoing that A (a, b) is a subset of the set H
of all such functions from C(a, b) which have at least at one point of (a, b) a finite
derivative. But H is a set of the first Baire category (cf. [7]. p. 260), hence A(a. b)
is such a set, too. This ends the proof.

The function fe C(a, b) is said to be strongly locally Hélderian at the point
p €(a, b) if there exist such a >0 and the real numbers a>(0, K>0 that for
arbitrary two points x, ye(p -8, p +8) we have |f(x) - f(y)|= K|x—y|*. The
function fe C(a, b) is said to be a locally Holderian function at the point p € (a, b)
if there exist such a >0 and the real numbers a>0, K>0 that for each
xe(p—96, p+06) we have

|f(x) - f(P)|=K]|x —p|*

Denote by P*(f), P(f) (fe C(a, b)) the set of all such points p € (a, b) at
which the function f is strongly locally Hélderian and locally Horderian, respective-
ly. Obviously we have P*(f)c P(f).

If we put in the previous definitions a = 1, we obtain the notion of strongly
locally Lipschitzian and locally Lipschitzian (at a point) functions, respectively
(cf. [1], [2D.

Denote by L*(f) and L(f) the set of all such points p €(a, b) at which the
function f is strongly locally Lipschitzian and locally Lipschitzian, respectively.
Evidently we have

L(f)=P(f), L*(f)=P*(f)

From the proofs of Theorem 1 and Theorem 2 we can easily deducg the
following results.
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Theorem 1'. If fe C(a. b) is an approximately differentiable function on
(a. b), then the set [a, b] — L*(f) is a nowhere dense set in [a, b].

Corollary. If fe C(a, b) is approximately differentiable on (a, b), then each
of the sets

[a. b] = P(f), [a. b] = P*(f). [a. b] - L(f)

is a nowhere dense set in [a, b].
Theorem 2'. If fe C(a, b) is symmetrically differentiable on (a., b) and has
the property (V), then the set [a, b] — L*(f) is nowhere dense in [a. b].
Corollary. If fe C (a, b) is symmetrically differentiable on (a, b) and has the
property (V), then each of the sets

[a. b]=P(f), [a. b] = P*(f). [a, b]-L(f)

is nowhere dense in [a, b].
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SUHRN
O BODOCH ABSOLUTNEJ SPOJITOSTI SPOJITYCH FUNKCIf
Tibor Salit, Bratislava

Préca iizko nadvizuje na préicu [4] a doplita ju. V praci je opisand $truktira mnozin bodov
absoliitnej spojitosti pre niektoré triedy funkcii.

PE3IOME
OB TOYKAX ABCOIIIOTHOM HEIMPEPBIBHOCTH HEINPEPBIBHBIX ®YHKLUN

Tu6op Wanat, Bpatucnasa

Pa6ota y3ko npumbikaeTcs k pabote [4] u nononnseT eé. B pabote onucano CTPOEHHE MHOXECTB
TOYEK aGCONIOTHON HENPEPLIBHOCTH ISl HEKOTOPbIX KIaCcCOB yHKUHMA. 0
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