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ORDER-PRESERVING MAPPINGS OF COUNTABLE
DENSE SETS OF REALS

JAN BORSIK, KOSICE, IVAN KOREC, BRATISLAVA

1. Introduction and the result

A well-known theorem says that every countable dense ordered'sets without
the first and the last element have the same order type, i.e. there is an
order-preserving bijective mapping of one of them onto the other (see 2D.

In the case that these sets are subsets of the set R of reals, of course also some
further properties of that mapping can be required. The main concern is so that it
can be extended into a continuous function on the whole R. We can see that here
the dense order is not enough, but the density of both sets in R (or another
additional condition) must be required. Similar problems are studied in [1].

In the paper it is demonstrated that in such a case there is a bijection between
both sets which is not only continuous but which has all derivatives as well and even
we can develop it into the MacLaurin series. A function which can be developped
to the MacLaurin series (which converges to the function for every real x) will be
called analytic function.

The main result of the present paper is:

1.1. Theorem. Let A and B be dense countable subsets of R. Let @(x) be
a continuous positive function and let k be a positive integer. Then there exists an
increasing analytic function f(x) which is a one to one correspodence between the
sets A and B and satisfies the inequality

max {|f(x) — x|, |[f'(x) = 1], [f'Cx)], ..., IF0x)]} < @(x) (1.1)

for every x € R.
This result can be extended as follows ; N denote the set of positive integers.
1.2. Theorem. Let (A))icn, (Bi)ien be two collections of mutually disjoint,
countable, dense subsets of the real line. Let ¢(x) be a continuous positive function
and k € N. The there exists an analytic increasing function f(x) satisfying (1.1) and
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such that
f(A)=B; forall ieN. (1.2)

In Section 3 we shall show that we cannot ask for f to be a polynomial instead
to be an analytic function in the theorem above. Analogously, the dense subsests of
the real line cannot be replaced by dense subsets of the complex plane.

2. Proof of the theorems

2.1. Lemma. Let ¥(x) be a continuous positive function. Then there exists an
even analytic function h(x) satisfying the inequality

h(x)<y(x) for every real x. (2.1)

Proof. We shall construct the function h(x) in the form h(x)=e "*. To
construct the function H(x) define

F = 1
" min {W(x): |x|=2""")

(2.2)

and for i<n denote by q(n, i) the least positive integer such that

n—iq(n.i)>yn—i _n

Further define k(1)=0 and
k(n)=2max {k(n—1)+1, q(n, 1), ..., q(n, n—1)}
for all integers n>1.

All the integers k(n) are obviously even and k(n)<k(n+1) forallneN.

Now define

F,
Ck(n)=Fh forall neN

and

H(x): Z(:k(,.).xk("). (2.3)
n=1
We have to prove that the series (2.3) converges for every real x. Let x € R. There
is me N such that |x|=2". For all integers j>m we obtain

k()| < mk(<__—1__, Hym.k(j) —
IC/‘(,-)X |_— ck(n.Z = 2,-.,‘(,) 2 =
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F; F; F; " :
=2(i-ml)k(i)§2(/’—».)4[4(1: = ' E =(F.,.2m).2"".

2(i m) "
F‘I'l

Hence (2.3) converges by the comparative criterion. Since all k(n) are even and
positive, the function H(x) is even and hence

h(x)=efn(.x)’

is even, too. The function h(x) is obviously positive ad analytic.

It remains to show h(x)<¥(x) for every x € R.

Let xe R, |x|<2. Since 0< H(0)=<H(x) and e *<x"' for all positive x, we
have

I ]

h = HO < o HO) - —
(x)=e € H(O0) cwo, F

Let x€ R, |x|Z2. Then there is me N such that 2" <|x|<2"*'. From this we
obtain

Ck(m)- 2""“"')5 Ci(m)- |x|“'"’§ Z C“”ka = H(x) s
i=1

This implies

Lo 1

=e H®X = =
h(x) € <H(x)—ck(m).2m.k(m)

1<
F = Y(x).

2.2. Remark. It is easy to see that the function h(x) is increasing on the
interval (— o, 0).

2.3. Lemma. For every positive continuous function ¥(x) and every positive
integer k there is a positive analytic function g(x) such that

max {g(x), [¢'(x)], ..., [§®(x)|} < W(x).e ™ (2.4)

for every real x.
Proof. By 2.1 and 2.2 we may assume that W(x) is an cven continuous

positive function, increasing on the interval (— o, 0) and such that lI’(x)<% for

every real x. By lemma 2.1. there is an even analytic positive function g,(x)
satisfying the inequality

go(x) < W(x).e **"** for every real x.
For 1=n=k define
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.tl,.(x)=2l—,,"[:g.._|(t) d"fm ga-i(t) dt (2.5)

and denote
Gi(x) = f Gur(1) dt. (2.6)

We show that g, (x) is an even analytic positive function satisfying the inequality

max {g.(x), |g:.(x)], ... |[gi" ()} <W(x).e”* """ 2.7
for every real x.

This we can prove by induction.
For n =0 it is obvious.
Let now g.(x) be an even analytic positive function satisfying (2.7). Since

oo

f e~ dx=Vn<2

and
0<g,.(X)< q,(x).e—(k—n+|)x2<|/2c*'~’

J g.(t) dt converges and

O<Jm g.(1) dt<j g.(1)dt<1 foreveryreal x. (2.8)

(2.5), (2.6) and (2.8) implies that g,.,(x) is an even positive function.

The function g.(x) is analytic, hence the function G, (x) is also analytic and
therefore the function g,.,(x) is analytic, too.

Now we shall verify the inequality (2.7).

Let x b a nonpositive real. The functions ¥(x) and e *~™** are continuous
and increasing on (—, 0), and e **>0, hence according to the mean value
theorem we have

0< f g.() dt = j W(r).e ¢ e dr =
Smax {W(1).e “ " rre(—oo, x))} f e " dt<W(x).e "M,

Since all the functions are even, the inequality holds for positive x, too. Therefore
0<G.(x)<W¥(x).e"™* ™ for every real x. (2.9)
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From (2.5), (2.6), (2.8) and (2.9) now we have
g,,+.(x)=% . G,.(—x). G,.(x)< ‘I’(x).e“"""'*"*"”

for every real x.
Further we get (using (2.6) and (2.8))

1 '
|g,'.+|(X)| =‘2,,T I_Glll(—x) Gn(x) + G,.(“X)- Gn(x)l <
<27 . g (x)<W(x).e "=,
Finally, let 0=i=n. Then we obtain
i+1 1
19:37(0)| = 557 [[= g (=%). Gu(x) + 9a(x). G ()] | =

znlﬂ 2( ,’) gi(x).[GP(x) + G (- x)]| < W(x).e™* ™.

IIA

We have used that Y, (;) =2' and that | G{’(x)| < 1. The inequality (2.7) is proved.

j=0
Now we put

g(x)=gu(x). (2.9)

Then g(x) is an analytic positive function satisfying (2.4).
2.4. Lemma. Let @(x) be a continuous positive function. Let g(x) be a
continuous function such that

|g(x)<@(x).e™ for every real x.

Let P,(x) be a polynomial of degree n. Then the function %-(ﬂ is bounded.
Proof. Since |g(x)|<@(x).e ™, we have

P.(x).g(x)
o(x)

and the function on the right is obviously bounded.

2.5. Lemma. Let @(x) be a continuous positive function and let F(x) be
a function. Let n and k be positive integers. Let C={cy, ..., c.} =R and D be
a dense subset of R, let ¢ ¢ C. Then there exists an analytic function G(x) which
vanishes at the points c,, ..., ¢, and such that

<|P.(x)|.e7,

F(c)+G(c)eD, (2.10)
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max (|GG, 1G' (), ..., |GV ()] < B2 @11)

Proof. Bylemma 2.3 there is an analytic positive function g satisfying (2.4).
Define a function h(x) by

h(x)=(x—c).....(x —¢.).g(x). . (2.12)
Therefore h(x)=P,(x).g(x), where P,(x) is a polynomial of degree n. Then
0. o
h9(x) = E (i)Ps‘i)(x)g(i—i)(x)
i=0
for all nonnegative integers j. By lemma 2.4. the functions
PO(). " (x)
®(x)
are bounded for all nonnegative i, j, i =j= k, therefore the functions
h(x) h®(x)
e(x)" "7 @(x)

are bounded, too.
Let L be their common bound and

_ 1
P=21"
The set D is a dense subset of R, hence there is

de DN (F(c)—p.h(c), F(c)+p.h(c)).

Let r=g——}%). Define G(x)=r.h(x) for all real x.

The function G(x) is obviously analytic, it vanishes at all the points c,, ..., ¢, and
F(c)+ G(c)=d e D. Finally, since |r|<p, for nonnegative integer j=k we get
lG(i)(x) — 1yl |h(i)(x) _1

@(x) @(x) 2"

Therefore we have
|GP(x)| < @(x).27" forall je{0,1,..., k},

i.e. G(x) satisfies 2.11, too.

Notice that 2.5. holds also for n=0; then C=0 and h(x)=g(x).

2.6. Lemma. Let ¢(x) be a continuous positive function. Let n and k be
positive integers. Let D={d,, ..., d,} =R, d ¢ D and C be a dense subset of R.
Let ¢y, ...,c.€R and let F(x) be a continuous surjective function such that
F(c)=d for i=1, ..., n. Then there is an analytic function G(x) and a number
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c € C such that G(x) vanishes at c,, ..., ¢,, F(¢)+ G(c)=d and (2.11) holds.

Proof. By 2.3. there is an analytic positive function g(x) satisfying 2.4. Let
h(x) be then function defined by (2.12) and let L be a common bound for the
functions

h(x) h*(x)

e(x)" 7 @(x) -
Since F(x) is surjective, there is y € R such that F(y)=d. Since d ¢ D, we have
y#c¢ for i=1, ..., n and therefore h(y)#0.

The functions F(x) and h(x) are continuous at the point y, hence there is positive &
such that

Put p=2,,1L.

lh(y)—h(t)|<|i(§¥)—| and |F(y)—-F(t)|<p~|Z()’)|

whenever |y —t|<68. The set C is dense, hence there is

ceCn(y—46,y+06) suchthat c#¢ fori=1, ..., n.

Put r=d":(lzgc) (obviously h(c)#0). Since |y —c| <8, we have
h
()] - ()| = h(y) — h(e)| <L (2Y)|‘
therefore

1 2
[h()] " [RDI

Further we have
|F(y)— F(c)|= |d—p(c)|<l7'|_hz()i|,
hence |r|<p. :
Now define
G(x)=r.h(x).

Then F(c)+ G(c) = d. The other required properties of G can be easily verified.
2.7. Proof of Theorem 1.1. We may obviously assume that ¢(x) <1 for every
real x. Let

a, az, az, ...
by, by, b, ...

be one to one lists of the elements of A, B, respectively. The function f(x) will be
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presented in the form

f=x+ 3 0.00), (2.13)

where the functions g,(x) will be constructed by induction. Let n = 1. By 2.5. there
is an analytic function g,(x) such that a,+ g,(a;)€ B and -

max (9., ... |90l < T2,

Denote a,=c,+g(a;)=d,, Ci={c}, D,={d\}. Now suppose that we have
already sets C,={c\,...,c,}c A, D,={d,, ...,d,} =B and analytic functions
gi(x), ..., g.(x) such that f,(c)=d; for i=1, ..., n, where
FO=x+3a® (2.14)
=

and

ma (1000 41, . 400} <22

for i=1, ..., n and for all xeR.
We shall distinguish two cases: n is even and n is odd.
a) If niseven,denote s, =min {ie N: ¢, ¢ C,} and a, =cCn+.

Then c,., € C, and hence by 2.5. there is an analytic function g, ..(x) such that

gnri(c)=0 for i=1, ..., n,
fn(cn+l)+gn+l(cn+l)€B

and

max (19, (O 1950 - [0} < G- 2.15)

Denote
fa(Cnsr) + gnti(Cnrr) = dusr, CoU{Crs1} = Cran,
D,u{dn+1} =Dnsr, fu(X)+ Gns1(X)=fari(x).
b) If n is odd, denote
r.=min {ie N: b;¢ D,} and b,, =d,,., ; obviously d,,., ¢ D, .
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. Since the functions g(x), ..., g.(x) are bounded and continous, the function

)

f.(x)=x+2, g:(x) is surjective.
i=1

Therefore by Lemma 2.6. there is an analytic function ¢,.,(x) and a point
ca+1 € A such that g,.,(x) vanishes at the points ci, ..., i, fu(Cas1)+ Gns1(Cns1)
= d,., and it holds (2.15).

Denote C,..=C,U{cns1}, Dur1=DaU{dnsr}, fasi(X)=fa(x) + gusr(x).

Define a function f(x) by

f(x)=x+§l gn(x). (2.16)

Since |g.(x)|<@(x).27", the right-hand side of (2.16) converges for all reals x.
Since all g,(x) are analytic functions also the function f(x) is analytic.
Since |gi(x)|<@(x).27"<27", we have

f(x)=1+ Z. g:(x)>0,
i.e. the function f(x) is increasing. It is easy to see that f(x) satisfies the condition
(1.1).
It is also easy to verify that A = CJ C.and B= CJ D.. Since g..(¢;)=0 for all
n=1 n=1

m>j, we have f(C,)=D, and therefore f(A)= B, too.
2.8. Proof of Theorem 1.2. Since the proof is very similar to that of
Theorem 1.1. we shall only schetch it. Let A = | J A;, B =] B.. The functions g,
ieN ieN
will be constructed in the same way as in the previous proof. However, if n is even
and c,. € A; then instead of

fn(Cn+|)+g,.+|(C,.+|)€B—D,,,
we have to arrange
fa(Cnsr1) ¥ Gnsr(Car1) €Bi— D,.

Analogously, if n is odd and d,.., € B;, then instead of c¢,., € A we have to arrange
Cu+1 € A

3. Remarks

We point out again that although we can choose the function in 1.1. so that it is
analytic, we can never more result in a polynomial.

3.1. Proposition. There are two countable dense sets A and B in R such that
P(A)+# B for every polynomial P.
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Proof. Let P,, P,, P, ... be a one to sequence of all polynomials with rational
coefficients.
Put I={ieN: P.(Q)n(i, i + 1) # @}, where Q is the set of rational numbers.
For each i eI let us choose an arbitrary element
rie P(Q)n(i,i+1).

Let us denote A=Q, B=Q—{r:iel}.

Let P be a polynomial such that P(A)=B. Since P(A) contains only rational
numbers all the coefficients of P are rational. Therefore P=P, for some i€ N.
However, then we have r,€ P,(A), r. ¢ B which contradicts P(A) = B.

3.2. Proposition. Let K be the set of all complex numbers. Let f(x) be
a complex analytic function such that

|[f(x)—x|<e™™ foreach xeK.

Then f is the identical function.

Proof. The assertion follows from the Liouville theorem.

This assertion shows that it is not possible to extend Theorem 1.1. to complex
numbers.
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SUHRN

MONOTONNE ZOBRAZENIA MEDZI HUSTYMI SPOCITATELNYMI
MNOZINAMI REALNYCH CISEL

Jan Borsik, Kosice, Ivan Korec, Bratislava

V préci sa dokazuje, Ze pre TubovoIné dve husté spocitateIné podmnoziny realnej osi, lubovolni
kladni spojiti funkciu @(x) a TubovoIné prirodzené &islo n existuje analyticka redlna funkcia f(x) taka,
7e f(A)=B a pre vietky redlne &isla x plati

max ({|[f(x) — x|, [f'() = 1[, [f'COL, ... [F)ID <@(x).
Toto tvrdenie sa zovieobeciiuje na pripad spoitatelnych systémov {A;: ie N}, {B.: i € N} po dvoch
disjunktnych hustych spoditateInych mnozin; vtedy f(A;) =B, pre vietky i€ N.

Dokazuje sa tieZ, Ze v uvedenom tvrdeni nemozno nahradit redlnu os rovinou komplexnych é&isel,
ani analyticku funkciu f(x) polynémom.

PE3IOME

OTOBPAXEHUS MEXIY CYETHBIMU IUIOTHBIMUA IMOOIMHOXECTBAMH
BEIWECTBEHHOW TTPIMOM, COXPAHSIOIIME TTOPSANOK

SIu Bopcuk, Kommue, iBan Kopen, Bpatucnasa

B pa6oTe noka3sbiBaeTcs cliefyiouas Teopema:
IMyctb A ¥ B — cYeTHble IUIOTHBIE TOAMHOXECTBA BEILECTBEHHOH MpsMOM, nycTh @(x)
— TMOJIOXHTENbHAs BELUECTBEHHas HenpepbiBHas (YHKUMSA BEILECTBEHHOTO MEPEMEHHOTO H n

— HaTypanbHoe yucno. Torma cyuiecTByer aHanuTHYecKasi pyHKuMs f(x) Takasi, yto f(A)=B u nas
BCEX X

max ({[f(x) = x|, [f'G) = 1|, [ .. [F(0N < @(x)

Dta TeopeMa o6GoGuiaetcs mas caydas cyeTHbix cucteM {A;;ieN}, {B;,ie N} mnonapHo
HenepeceKaroUMXCS CYETHBIX IUIOTHBIX MOAMHOXECTB BEIIECTBEHHON mpsaMoii; Toraa f(A;)=B; ans
Bcex i€ N.

[anee poka3biBaeTcs, YTO Teopema He OyaeT BEPHOW, €C/iM B HEH 3aMEHHThL BELLECTBEHHYIO
NPAMYIO KOMIUIEKCHOH IUIOCKOCTBIO HIIH aHATMTHYECKHE (DYHKUHH MOTHHOMAaMH.
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