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ON COMPATIBILITY IN QUANTUM LOGICS

TIBOR NEUBRUNN, SYLVIA PULMANNOVA, Bratislava

Introduction

The notion of compatibility in quantum logics is an important tool in this
theory. It is a useful notion from the mathematical point of view and on the other
hand it has its own physical meaning. Many modifications of this notion are known
in the literature. The aim of this paper is to compare various of them and to
illustrate their applications in two directions. The first is the problem of existence of
a Boolean o-algebra containing a subset of a given logic L and contained in L. The
second one is the problem of existence of joint observables and joint distributions.
The results we are dealing with have been mostly published. What is new are some
interrelations between them. Only some of the proofs giving the interrelations or
explaining the basic ideas are given. As to the others we give the corresponding
refferences. To make the paper self contained, at least in certain extent, we give
some well-known examples in the preliminary part.

Preliminaries

By the mathematical description of quantum experiments, a generalization of
classical probability theory is needed. While in the classical probability theory the
set of all “experimentally verifiable propositions” of the physical system (or,
equivalently, the set of all random events) can be mathematically described as
a Boolean o-algebra, in the quantum case a more general algebraic structure is
needed. The reason for this is the fact, that there exist pairs of physical quantities
(e.g. position and momentum of a particle) which cannot be measured simultane-
ously with an arbitrary accuracy — as it can be seen by the well-known Heisenberg
uncertainty principle. In the quantum logic approach to quantum mechanics, the
basic concepts are the set L of all experimentally verifiable propositions of the
physical system and the set M of physical states. L is usually suposed to be
a partially ordered set with the greatest element 1 and the least element 0, with the
orthocomplementation L: L— L such that
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(i) (a*)*=a, a€lL
(ii) a=b if and only if b*<a*, a, belL
(iii) ava*=1forall aeL

(where we denote by x Ay, resp. x v y the infimum, resp. supremum of x and y of L
if they exist); and with the orthomodular property

(iv) a<b(a,beL) implies 3ceL; c<a* and b=avc;

and which is closed under the formations of the suprema v a; for any sequences
{a:} =L such that a,<aj, i#]. A set L with the properties just described is called
a logic.

The elements a, b e L are called orthogonal (a L b) if a<b*; and they are
compatible (a <> b) if there are elements a,, b,, ¢ in L mutually orthogonal and
such that a=a,vc and b=b,vc.

Let us mention some important examples of logics.

Example 1. Let H be a separable Hilbert space and L(H) the collection of all
closed subspaces of H. If the orthocomplementation is defined as the usual
orthocomplementation in H and the ordering is given by inclusion, we obtain a logic.

Example 2. Let Q be a set and S a nonempty collection of subsets of € closed
under complements and countable disjoint unions. If the ordering is defined by
inclusion and if for E € S we define E* as the set-theoretical complement, we have
another example of a logic. This logic is known as g-class [5]. It is also called
a q —o-algebra [11], or a G-logic [17].

Remark 1. The last example is a straightforward generalization of Boolean
o-algebra of sets. There are o-classes which are not o-algebras. A simple but useful
o-class for giving various counterexamples is the following (see [16]).

Example 3. Q=(1,2, ..., 8} and S is the collection of all subsets of € with
even number of elements.

Remark 2. Note that two elements E, F of a o-class S are compatible in S
exactly if EnFeS. v

A state on the logic L is a probability measure on L, i.e. a map m: L—[0,1]

such that \
(i) m(1)=1 ‘
(ii) m( ‘7 a.») =Y m(a) for any sequence {a;} of mutually orthogonal ele-

i=1

i=1
ments of L. A set of states M is called full for L if m(a)<m(b) for all me M
implies a<b (a, beL).
Let L, and L, be two logics. The mapping h from L, into L, is called
a o-homomorphism if
(i) h(1,)=1, (where 1, and 1, are the greatest elements in L, and L,,
respectively),
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(i) pLgq, p, qeL, implies h(p) L h(q),

(iii) h(\/p:)=V h(p:) for any sequence {p;} of mutually orthogonal elements
of L,.

With the help of the concept of g-homomorphism we introduce observables
(corresponding to physical quantities). If R is the real line and B(R) is the
o-algebra of all Borel sets, then any o-homomorphism of B(R) into L is called an
observable on L. If x is an observable and f: R— R is a Borel measurable
function, then the map f(x): E+s x(f '(E)) is also an observable, which is called
the function f of the observable x. Spectrum o(x) of the observable x is the
smallest closed set C< R such that x(C)=1. An observable x is bounded if its
spectrum o(x) is a compact set. If x is an observable and m is a state on L, then the
map m,: E~ m(x(E)) is a probability measure on B(R). It is called the probabili-
ty distribution of the observable x. The expectation of the observable x in the state

m can be defined by m(x)= J' tm,(dt), if the integral exists.
R
A subset L, of a logic L is called a sublogic of L if

(i) aeL, implies a* €L,
(i) ai, a2, ... €L, with a;, L a; implies \/a; € L,.

It can be easily verified that a sublogic of a logic is a logic itself.

A sublogic Loc L is called a lattice sublogic provided that a, b € L, implies
avb exists in L and is in L,. In this case L, is a lattice.

If a lattice sublogic is distributive, then it is a Boolean o-algebra and it is called
a sub-o-algebra of L.

Note that some authors define the sublogic of a logic by means of the notion of
the isomorphism of the following kind.

If L, and L; are two logics, then an isomorphism from L, into L, is defined as
an injection h: L,— L, such that

(i) a,beL, and a L b implies h(a) L h(b),

(i) a.(n=1,2,...)e L, and Va, exists in L, implies that there exists \/ h(a,)
in L, and h(Va,)=\Vh(a,),

(iii) h(0,)=0,, h(1,)=1,, where 0;, 1; (i =1, 2) are the least and the greatest
elements in L;, respectively.

A logic L, c L is then defined to be a sublogic of L if the identity map from L,
into L is an isomorphism. )

In what follows the sublogic will be understood not in this sense, but in the
sense of the first definition. If we consider the sublogic in the sense of the
isomorphism we say it explicitly.

Note that the two definitions are not equivalent. To see this (see [21]) it
suffices to consider the following example.
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Example 4. Let 2={1, 2, ..., 8} and let S be the o-class of all subsets of Q.
Let S, be the o-class consisting of all subsets of  with even number of elements.
Then S, is a sublogic of S. But it is not a sublogic defined in the sense of
isomorphism. If fact if we take E={3, 4, ...,8), F={2, 4, .., 8}, we have
EvF=(1,2,..,8}in S, but h(E)vh(F)={2, 3, ..., 8} in the logic S.

Of course, it is caused by a rather strong definition of the isomorphism.
Nevertheless, sometimes it has certain reason to consider the notion of a sublogic in
the last sense.

Note that in case of sub-o-algebra there are no difficulties, even if we consider
the definition by means of an isomorphism. It can be easily seen that such definition
gives the same result.

Compatibility and subalgebras of logics

Compatible sets are important in the problem of existence of Boolean
o-subalgebras. A set A c L is said to be compatible if a <> b for any two elements
a,beA.

Varadarajan [22] proved the following statement.

Theorem 1. Let L be a logic which is simultaneously a lattice. Then
a necessary and sufficient condition for the existence of a Boolean sub-o-algebra B
such that AcBcL is that A is a compatible (in L) set. ;

The theorem was formulated in [22] for logics which are not necessarily
lattices. But it was shown by Pool [16] and independently by Ramsay [19] that it
is not true in such general formulation.

Example 5. Let 2={1,2, ..., 8} and let S, have the same meaning as in
Example 4. The subclass A ={E, F, G} where E ={1, 2, 3, 4}, F={(1,2,5, 6},
G ={1, 3, 6, 8} is compatible (in S,) but there is not a Boolean o-algebra B of sets
such that AcBcS,. In fact, if such a o-algebra existed, then it would contain
(EUF)NG. But the last is not true.

One can see in the above example that the set E is not compatible with FUG
in spite of the mutual compatibility of E, F, G. So the following condition seems to
be important for a logic L.

Let L be a logic. We say that L satisfies the condition (c) if for any three
elements a, b, ¢ which are mutually compatible, we have

(c) aobvce

The following theorem is true.

Theorem 2. Let L be a logic satisfying (c). Then to any compatible set A = L
there exists a Boolean sub-o-algebra B such that Ac B< L.

The proof of this theorem for o-classes may be found in [5]. (As to the idea of
the proof and also the idea of the proofs which follow, it will be given later). It is
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proved for general logics in [21] and in [10]. In the paper [21] there was given also
a condition when a generated sub-o-logic in the sense of the isomorphism coincide
with the generated Boolean sub-g-algebra. There is proved the following theorem.

Theorem 3. If a o-logic L satisfies the condition (c) and A c L is compatible,
then there exists a Boolean sub-c-algebra B of L such that A B cL,
Moreover, the o-sublogic (in the sense of isomorphism) generated by A
coincides with the o-algebra generated by A.

Note that the o-sub-logic generated by a compatible set in general does not
coincide with the o-algebra generated by this set. One can take Example 4 and
consider S, for A. Here S, is the generated sub-o-logic, which is not
a sub-o-algebra. We shall mention later the conditions for the equality.

Another condition strenghthening compatibility which was used to prove the
existence of a sub-o-algebra was given in [7] and independently in [12]. We shall
call it strong compatibility (s-compatibility).

Given a set A c L the smallest logic L, containing A which is a sublogic of L
always exists. The set A is said to be strongly compatible if any two elements

L, . Ly
a, be A, are compatible in L, (notation a < b). The compatibility a & b means

that there exist elements a,, b,, ¢ € L, such that they are mutually érthogonal and
a=avc, b=b,uc. In [12] and [7] the following theorem is proved.

Theorem 4. If a set A c L is strongly compatible then there exists a Boolean
sub-o-algebra B such that Ac Bc L.

Moreover in [12] it was proved that if the assumption of the theorem is
satisfied, then the generated (by A) sub-o-logic coincides with the generated
Boolean sub-o-algebra. The last fact was for o-classes shown in [13].

A stronger notion of compatibility has been introduced also in [1]. To
distinguish this notion we shall call it full compatibility (shortly f-compatibility).

A finite set {a,, a,, ..., a,} of elements of a logic L is said to be full compatible
in L if there exists a finite collection of pairwise orthogonal elements {e;, 1 <i<k)
such that for any element a; (1<i<n) there exists a finite subcollection {e,} of

{e} such that a;=\/e,. A set A cL is said to be f-compatible in L if any finite
J

subset of A is f-compatible in L.

Using f-compatibility a result in [1] was obtained which gives immediately the
following.

Theorem 5. If A c L is f-compatible in L, then there exists a sub-o-algebra B
such that AcBcL.

After the theorems on sub-o-algebras have been proved using several notions
of compatibility it is not difficult to see how the last are connected each with others.

Position 1. Let L be a logic. Then
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(i) Both full compatibility and strong compatibility of A in L imply compati-
bility of A in L. The converse is not true.

(ii) Strong compatibility of A in L implies its full compatibility. The converse
is not true.

(iii) In the logics where (c) is satisfied the notions of compatibility and full
compatibility are equivalent. In general they are not equivalent with strong
compatibility.

Proof. (i) The fact that strong compatibility or full compatibility imply
compatibility follows immediately from the corresponding definitions. Compatibili-
ty does not imply strong compatibility. As an example we can take Example 4. In
that example the class S, is compatible in S but it is not strongly compatible, since
the generated logic by the logic S, coincides with S,.

The fact that compatibility does not imply full compatibility may be seen from
Example S, where A is compatible in S,. The set A is not full compatible in S,
since there is not an orthogonal collection in S, such that elements of A may be
covered by some its subcollection.

(ii) Since A is strongly compatible, according to Theorem 4 there exists
a sub-o-algebra B such that Ac Bc L. Let {a,, ..., a,} be any finite subset of A.
Denote for any aeL a"=a, a'=a". Then the collection K = {a,"Aa,"A...a,"}
where i; =0 or j; =1 is a collection of elements belonging to B. Since the elements

of K are mutually othogonal and for any a, (i=1, 2, ..., n) we have a, =
=a.i‘A.../\a,-ﬁl""'/\a,-Aa;+|i"'A...Aa,.i", Where i|, oo i,'_|, l.,'+|, weiny in assume
values 0 and 1, {ay, ..., a.} is fully compatible.

Full compatibility does not imply strong compatibility. It may be seen from the
same example which was used in (i) to prove that compatibility does not imply
strong compatibility. In fact, the set S, in that example is full compatible in S.

(iii) Let A be compatible in L. If (c) is satisfied, we may use Theorem 2, to
obtain a Boolean algebra B such that A = B c L. Then we can prove as in the proof
of (ii) that A is fully compatible. A is not in general strongly compatible. It has
been already proved, since in the example used in (ii) the logic satisfied the
condition (c). ’ '

All the results for general logics may be of course applied to o-classes.
Nevertheless since o-classes are of a special character, we may give a special
condition for the existence of a Boolean sub-o-algebra. Such a condition was
obtained by means of the notion of n-compatibility in the paper [8]. A different
proof was given in [17].

Let n be a positive integer. A collection A — S, where S is a o-class is said to
be n-compatible in S provided that for any subcollection of A containing finite
number of elements E,, E,, ..., E, we have E,nE,;Nn...nE, €S.

Theorem 6. Let S be a o-class, A  S. Then a Boolean algebra B of sets such
that AcBcS exists if and only if A is n-compatible for any n.
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The proof, which was obtained independently of the preceding theorems,
follows from some of them as it may be seen from (i)’ of the following proposition.

Proposition 2.

(i)’ n-compatibility for any positive integer n of a collection AcS is
equivalent to f-compatibility of A.

(ii)" 3-compatibility of a o-class S is equivalent with the condition (c) for S.

(iii)" Strong compatibility of a set A S implies n-compatibility for any
integer n.

(iv)’ If S is 3-compatible, then compatibility of A =S is equivalent with
n-compatibility for any positive integer n.

Proof. (i)' Let A = S be n-compatible in S. Let E,, E,, ..., E, be elements of
A.ThenE,, E;—-E,,...,E,— E,UE,u...UE,_, exist in S owing to the compatibil-
ity of any subcollection of {E,, ..., E,}. But such constructed sets are orthogonal
and any of the sets E; (i=1, 2, ..., n) may be obtained as union of some of them.
Thus A is full compatible. Conversely, let A be full compatible. Let E,, E,, ...,
E.e A. Let {F}} (j=1, ..., m) be an orthogonal collection such that any E, is
a union of some of its subcollection. Then E,nE,N...nE, is a union of
a subcollection of {F;}. Hence E,nE,n...nE, € S proving the n-compatibility.
(i)’ The simple proof is given in [8]. (iii)’ It follows from (i)’ and (ii) of
Proposition 1. (iv)’ follows from (ii)’, (i)’ and from (iii) of Proposition 1.

We did not give any one proof of the theorems 1—S5. They are proved by
various methods. Roughly speaking, the methods may be divided into three groups.
One uses some form of the axiom of choice, another some kind of induction and the
third, usually used for o-classes, uses some form of Sierpinski method [20] of
constructing the smallest collection with given properties, containing a given
collection of sets.

As to the methods using the axiom of choice, they were used e.g. in the proofs
of Theorem 4 and S in the papers [21], [7] and [1], respectively, but also in some
others. Perhaps the proof in [1] seems to be very simple. The author simply shows
that taking a maximal fully compatible set conaining a f-compatible collection, we
obtain a Boolean sub-o-algebra of the logic L.

A transfinite induction method was used e.g. in [17] for the proof of
Theorem 6.

A modified Sierpinski method was used in [13]). A generalization of this
method was given by B. J. Pettis in [14].

Joint observables

Considering the classical case of a measurable space (£2, S), we knew that any
two S-measurable functions f, g define a homomorphism T(= T, ,) from B(R?)
into S such that T(R'x F)=g~'(F), T(E X R")=f"'(E) for any E, Fe B(R").
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Since the observables are generalizations of measurable functions, the follow-
ing question arise.

Given two observables x, y on a logic L, does there exist a homomorphism
z(z=2Z,.,) from B(R?) into L such that

Z(EXR"Y)Y=x(E)
zZ(R'x F)=y(F)

for any E, Fe B(R").

If such a homomorphism exists we call it according to Gudder [6] joint
observable of x, y.

It was proved by Gudder that in case the logic is a lattice, then compatibility
of x, y is a necessary and sufficient condition for existence of joint observable. (The
result holds for any finite number of variables and may be generalized also for
infinite number of variables).

Denote [ R, the cartesian product of sets R, = R' for A€ D. Let B be the

AeD

o-algebra generated by the sets {m, '(E)} where Ae D and E e B(R,) is any
Borel set. (Here n- denotes the projection of [| R, on R-). A collection {x,}
AeD

(ALe D) of observables is said to have a joint observable if there exists
a homomorphism h from B into L such that h(z;'(E)) = x,(E) for any E € B(R,).

It is well known that the joint observable need not exist even in the case when
{x,} (A € D) are mutually compatible, if L si not a lattice. It is sufficient to take the
following

Example 6. Let (2, S,) be the o-class from Example 5. Take the collection
A ={E, F, G} from that example. Define the following three observables x,, x-,
X3!

x-(A)=xé'(A). x:(A)=xr'(A), xs=xs'(A),

for any A € B(R"). (xc denotes the indicator of C.)

The compatibility of x; (i =1, 2, 3) follows from the compatibility of the sets
E, F, G. In spite of it the joint observable of x,, x,, x; does not exist, because the
existence of such observable z implies that z(B(R")) =L is a Boolean o-algebra
for which z(B(R%)) o {E, F, G}. As we know this is not possible.

The existence of a joint observable for a collection {x;} (A € D) of observables
may be proved if we suppose some of our stronger notions of compatibility. Then it
may be proved for a general logic.

Note that the stronger notion of compatibility is defined in a natural way as the

corresponding compatibility of the collection |J {x.(E): E € B(R")}.
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Then we can prove the following
Theorem 7. Let L be a logic and K ={x,, x>, ..., x,} be a collection of
observables. Then any of the conditions
(i) K is strongly compatible
(ii) K is fully compatible
(iii) K is compatible and the logic satisfies (c)
(iv) L is a o-class and K is n-compatible for any n=1, 2, ...

implies the existence of a joint observable for K.

According to Theorems 2—6 to prove Theorem 7 it is sufficient to prove the
following.

Theorem 8. If for a collection K ={x,, ..., x,} of observables there exists

a Boolean sub-g-algebra B of the logic L such that B DL"J{X,(E)IEGB(RI)}.
i=1

then the joint observable z for K exists.

Lemma. (See [22]). Let S be a Boolean algebra of subsets of a set X and & an
homomorphism from S onto a Boolean o-algebra A. Then for any homomorphism
x defined on B(R'") with the values in A there exists a real S-measurable function f
such that x(E)=h(f"'(E)) for any E € B(R").

Proof of Theorem8. Let B be the sub-o-algebra  containing
u' {x.(E): E€ B(R")}. According to the Loomis theorem [9] the o-algebra B is

a homomorphic image of a o-algebra of subset of X under a homomorphism h.
Then from Lemma we have for any x; an S-measurable function f; such that

x,(E)= h(f'(E)) for any E € B(R") (1)
Now let @ be the mapping from X into R" such that for any te X,
(p(t)=()’|» seey yn)

where y, = f,(t), ..., y. = f.(t). Now define the homomorphism z from B(R") into
L in the following way

2(A)=h(p '(A)), AeB(R") (2)
Then for any rectangle set A=E, XE, X ... X E, we have

@ '(A)={t: (fi(1), ..., f.()) e E, X E; X ... X E,}
=fi'"(E)n...0nf.'(E,),

so that

2(A)=h(@ '(A)=h(fT'(E))A...Ah(f."(E.)) =
=x,(E)A...x.(E,).
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For example, if A=E, XR'X ... XR', we get z(A)=x,(A).
Now if g is any real valued Borel function on R", then the map

go(xi,....x.): E—z(¢9 '(E)), EeB(R'"),

is an observable, the range of which is contained in B. If g,, ..., g, are real valued
Borel funkctions on R", and g is the map g: t=(t,,..., t.) = (g.(t), ..., gu(1)),
then the map E — z(g '(E)) from B(R") into L is the joint observable for the
observables g,o(xi. ..., X.), ... Gro(X1s ..., X,).

Theorem 8 enables us to define the joint distributions of x,, ..., x,: let m be
a state on L and x,, ..., x, observables such that the joint observable exists for
them. We may then define the probability measure P, . on B(R") by

P! . .(E)=m(z(E)), EeB(R").

The measure Py, ., is called the joint probability distribution of x,, ..., x, in
the state m. If E e B(R") is of the form E=E, X ... XE, then

Pl (B)=m( Ax(E))

If g...... g« are real valued Borel functions on R", then for the observables
(yi. .... »), where y,=gio (x1, ..., x,), i=1, ..., k, we have

Py w(F)=m(z(g '(F)=P:. . (9 '(F) (3)

where g is the map g(t)=(g.(¢), ..., g«(t)) from R" to R*. From this we see that
the rules for the calculation of the probability distributions are the standard ones of
the probability theory.

Let L be a lattice logic. For any observable x, x(E) denotes the event that the
measured value & of the corresponding physical quantity lies in the Borel set E. If
a quantum mechanical system is in a state m, then the expression

pv.  (Eix ... xE,,)=m(’_/:\|x,-(E,-)), (4)

E € B(R'), i=1,2,....n

denotes the probability that in the given state the simultanoeous measurement of
the observables x,, ..., x, gives measured values & lying in Borel sets E;, i=
1, ..., n, respectively.

If the function p7.. ., for given x, ..., x, may be extended to a probability
measure on B(R") for some state m, we say that the observables x,, ..., x, have the
type 1 joint distribution in the state m. This type of joint distribution (j.d.) was
introduced by Gudder [6]. He has shown that for given xi, ..., x, the type 1 j.d.
exists in all states from a full set of states M iff x,, ..., x, are compatible. In general,
the function p?' ., for given x,, ..., x, may be extended to a probability measure
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on B(R") (i) for any state me M, (ii) only for some states, (iii) for no state.
According to this characterization, we say that the observables x,, ..., x, are (i)
compatible, (ii) partially compatible, (iii) totally incompatible. The case (ii) is the
most interesting one.

Gudder [6] found the following criterion for the existence of type 1 j.d. for
two observables x, y in a state m: the type 1 j.d. exists iff

m(i\:/‘x(E,-)/\y(E)))=m(2x(Ei)A2y(E)) (5)

for any E X F=|JE X F,, where E, FeB(R') and E, X F, are disjoint measurable
=1

rectangles, i=1, 2, .... It was shown in [18] that this criterion can be essentially
simplified.

Theorem 9. The observables x and y have a type 1 j.d. in a state m iff

(i) m(x(E\VE)Ay(F))=m(x(E\)Ay(F))+ m(x(E;)Ay(F)) for any E,, E
Fe B(R') such that E,nE,=@, and

(i) m(xE)Ay(F,UF,))= m(x(E)Ay(F.))+m(x(E)Ay(F;)) for any E, F,,
F,e B(R') such that F,nF,=@.

Proof. Necessity:

() m(x(E\VE;)Ay(F))=p? ((E\VE,) X F)=pZ (E, x F) +
+pl (E: X F)=m(x(E)Ay(F)) + m(x(E:)Ay(F)),
the second equality follows from the fact that p7 , is a measure. The proof of (ii) is
analogical.
To prove sufficiency, let (i) and (ii) be fulfilled. Let D be the class of all

measurable rectangles E X F, E, Fe B(R') and let A be the algebra of all finite,
disjoint unions of the sets of D. For all E€ D, E=E'x E?, let us set

u(E)=u(E'X E*)=m(x(E")Ay(E?)).
It can be shown by routine arguments that the set function u: D — [0, 1] is finitely

additive. Now let E€ A, E=JE, EeD, i=1,2, ..., n. Let us set

W(E)= 3, u(E).

The set function u: A — [0, 1] is well defined and additive. By [15, Cor. 6.8, p. 30],
u is o-additive, i.e. there is a unique extension to B(R').

This result can be generalized for any finite set x,, x, ..., x, of observables: the
observables x, ..., x, have a type 1 j. d. in a state m iff

2

m(i/:\lx(E,-,uEiz)=_‘2 m(Axi(Eij'))’ . (6)

e In=
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for any E,,, E,, where E,nE,=@ fori=1,2, ..., n
In [2] there is shown that (6) is equivalent to the following

1

> m(Ax(ED)=1, (7)
Jie i ju=0 i=1
for any E,, ..., E, € B(R'"), where we set E'=E if j=1, EE=R'—E if j=0.
If an observable x has a pure point spectrum o(x)={A,, A., ...}, then x(E)=

=\ x{A} for any E€B(R"'). Now if the observables x,. .... X, with pure point

A€l .
spectra o(x;)={Ai. A, ...}, i=1, 2, ..., n, have a joint distribution in a state m,
then the measure p"' -.x, Must be concentrated on the set o(x,) X o(x.) X ... X
o(x,), ie.

S A AL ATy =m ( v Ax,{x,,})

iye iaes =1 e =1 i=1

On the other hand, let

m(“(u/! ! ./"\x"{’\;i} ) =

£

V A x{A}<a(E. ... E)

By veos =1 F=1

for any E,, ..., E, € B(R'), where we put-

a(EI, ceny Eu)= A Ax'(El
Jle s dn=0i=1
then by (7) the type 1 j.d. in the state m exists. Thus we get the following criterion :
the type 1 j.d. in a state m for the observables x, ..., x, with pure point spectra
exists iff m(ao) =1, where

a= V  Axir}. ®)
In the following examples, simple cases of observables are shown, which have
type 1 j.d. in no states and which have type 1 j.d. only in some states.
Example 7. An observable x is called simple if its spectrum o(x) = {0, 1}. Let
x, y be simple observables such that x{1} =a, y{1} =b(a, be L). It can be easnly
verified that the condition (8) can be rewritten in the form

m(anbvanb*va*aAbva‘ab*)=1. (8)’
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Now let L be the logic of all closed subspaces of twoo-imensional Hilbert
space. Let

N = N —
N — N —

Then P, and P, are the projection operators in the directions x and y, respectively.

As P.AP,=P:AP,=P.AP;=P;AP; =0, the simple observables P,, P, do
not have joint distribution in any state.
Example 8. Let L be the logic L(H) of three-dimensional Hilbert space H.
Let
1 00 1 0
P,=(() 0 0). Py=(()
000 0

l= 19—
Ni= -
N —

100
Then P, AP, =(O 0 ()), PiAP, =P, AP,=PiAP,;=0.
000
For any x € H, the map m.(P)=(Px, P), Pe L(H), is a state on L(H). Then by
(8)’, P. and P, have the joint distribution in the state m, with
1

<=(o)

and the joint distribution does not exist in the state m, with

The logic L is separasble if any subset of mutually orthogonal elements is at
most countable. If L is separable, then to any set {a,: @€ A}cL there is

o

a countable subset {a. )~ < {a.:a€A} suchthat A a.= A aand V a.=V a.
i=1

a€eA aeA i=1

If x,, ..., x, are observables on a separable logic, then the element

ap= A a(E., S0 E,,) (9)

Ey....E

exists in L and the observables x,, ..., x, have a type 1 j.d. in a state m iff m(a,) =1
(see [2]).
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We say that a € L is the carrier of the state m, if m,(b)=0 iff a L b. If the
carrier exists, it is unique.

Let us denote by Com (x,, ..., x,) the set of all states m such that the type 1
jd. for x,, ..., x, exists in m. From the properties of the carrier it follows that
m, € Com (x,, ..., x,) iff a<a(E,, ..., E,) for any E,, ..., E, e B(R").

If there is a state m, with the carrier a for any 0#a, aeL, and if L is
separable or the observables x,, ..., x, have pure point spectra, then we get for the
element a, defined by (9) or (8),

ao=\{a: m,eCom (x,, ..., x,)}. (10)

The main result concerning the type 1 j.d. is the following theorem.

Theorem 10. Let x,,...,x, be observables on a separable logic (or let
Xi, ..., X, be observables with pure point spectra on any logic). Let a, # 0, where a,
is defined by (9) (or by (8)). Then x;(E) is compatible with a, for any E € B(R")
and any j=1, 2, ..., n. The maps E — %;(E)=x;(E)Aa,, E € B(R'"), are compat-
ible observables on the logic Ly, .,={beL: b<a,}.

For the proof see [2] and [23].

From Theorem 10 we may conclude that if p7 . can be extended to
a probability measure for some state m, then the measurements of x,, ..., x, can be
replaced by measurements of the observables %, ..., %, on the logic L, .,;. Indeed,
as m(a,) =1 and x;(E) & a,, we have m(x;(E)) = m(x:(E) A a,) = m(%(E)) for any
EeB(R')and any i =1, ..., n. Thus we are justified to say that the measurements
of x,, ..., x, in the state m can be made simultaneously. If we set

T(E\ X ... XE)=X(E)AXAE)A...A%.(E,) =
=x(E)AX:AE)A...Ax.(E,)Aay,

then, because %, ..., &, are compatible, T can be extended to a o-homomorphism
from B(R") into Ly, .. Tcan be treated as a weakened form of the joint
observable.

It may be interesting to ask if there are some rules for the calculation of joint
distributions like to that ones for compatible observables (see (3)). In general, no
functions of n non-compatible observables for n > 1 are defined. But in some types
of logics, the sums of n observables are defined [4]. A very important example is
the Hilbert space logic L(H) (example 1). By spectral theorem, the (bounded)
observables are in one-to-one correspondence with the (bounded) self-adjoint
operators. If x and y are observables with the operators A, and A,, respectively,
then the sum x +y is defined as the observable corresponding to the operator
A, + A,, if it is self-adjoint. Thus, the sum of any two bounded observables on the
logic L(H) is defined. If x,, ..., x, are bounded observables and f,, ..., f., g, h are
bounded Borel functions on R', then e.g. the observables

h(x,+...+x.), fi(x)+...+f.(x),
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g(fi(x)+...+ f.(x.)). etc.

are defined. The element a, for the observables x,, ..., x, from (9) is now a closed
subspace of H. Let us denote it by H,. As x,, ..., x, are compatible with H,, the
operators A, A.,, ..., A,, are reduced by it, so that they can be treated as
operators on the Hilbert space H,. Since the sums and functions of operators
reduced by H, are also reduced by it, and

X\ +..,+x,./H()=x1/Hu+...+x,,/Hu
f(x)/Ho= f(x/H,)

we may conclude, that the rules for calculations of joint distributions, like that
defined for compatible observables by formula (3), hold for all ““allowed” functions
of xy, ..., x,. More details on the joint distributions of observables on the Hilbert
space logic can be found in [3].
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SUHRN
O KOMPATIBILITE NA KVANTOVYCH LOGIKACH
Tibor Neubrunn, Sylvia Pulmannova, Bratislava
Prica poddva prehlad o vyuziti roznych typov kompatibility na kvantovych logikich (istych
zovSeobecnenych priestoroch s mierou). Zameriava sa najmi na vyuzZitie kompatibility v probléme
existencie Boolovych podalgebier danej logiky, obsahujiicich dani mnozinu a v probléme existencie
zdruzeného rozdelenia na logikach. V tychto dvoch smeroch podava tiez, okrem prehladu, niektoré
nové vysledky.
PE3IOME
COBMECTHASA HABJIIOJAEMOCTb B KBAHTOBBIX JIOTUKAX
Twn6op Hoi6pyH, Cunsua [TynmanHoBa, Bpatucinasa
Pa6oTa ABIsieTCS 0030pHOM CTaThiO. [J1aBHOM LENbIO ABASETCH OO BACHUTH NPHMEHEHHE PA3HBIX
¢opm coBMecTHO#H HabGmofaeMocTH K npoGieme cyliecTBoBaHus BysneBckux anreGp copepxaluxcs

B JIJaHHOH JIOTHKE M K npo6ieMe CyLIECTBOBaHMS COBMECTHOrO pacnpefie/icHHsi HabmogaeMbIx Ha
norukax. B aThx ABYX HanpaBleHMSX JalOTCH TakXe HEKOTOPbIE HOBbI PE3yJbTAThI.
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