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QUASICONTINUOUS PROCESSES
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Introduction

The applications of the quasicontinuity in the topology and mathematical
analysis are well known. (see [2] [3] [4]) It seems that the quasicontinuity and some
related types of continuities may be used in the stochastic processes. Some relations
were indicated in [4]. The aim of the present paper is not to give a theory of
quasicontinuous processes, but to indicate some further possibilities of the applica-
tions of the quasicontinuity.

The first part of the paper extends some known results on the quasicontinuity,
the second relates them to the stochastic processes.

1

Let T, P be topological spaces. The function f: T— P is said to be quasicon-
tinuous at t € T (see [3]) if for any neighbourhood V of f(t) and any neighbourhood
U of t there exists an open set Gc U, G#@ such that f(G)c V. If f is
quasicontinuous at any te€ T, it is said to be quasicontinuous.

Functions f, g: T— P are said to be equally distributed at t € T, if for any two
open sets U, V such that f(t)e U, g(t)e V we have (f '(U)ng '(V))°#0 (A°
denotes the interior of A). If f, g are equally distributed at any ¢ € T, then they are
said to be equally distributed.

Proposition 1.1. f,g are equally distributed if and only if
(f'(U)ng '(V))°#@ for any two open sets U, V for which f'(U)ng ™ '(V)#90
holds.

Proof. Let f, g be equally distributed and let f~'(U)ng '(V)#8# for U, V
open in P. Then there is tef '(U)ng '(V), hence f(t1)eU, g(t)eV. So
(F'(U)ng (V) #0.

Conversely, let (f'(U)ng~'(V))°# @ whenever
f'(U)ng™'(V)=80 for U, V open in P. Then taking te€ T and U, V open such
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that f()eU, g()eV, we have [ '(Ung '(V)o{t}#0. Hence
(' (W)ng~ (V) #0.

Proposition 1.2. (a) Let f be continuous, g quasicontinuous Then f, g are
equally distributed.

(b) Let f, g be equally distributed and moreover let f be continuous
one-to-one and open. Then g is quasicontinuous.

Proof. (a) Let U, V<P be open and f~'(U)ng '(V)##@. Then f'(U) is
a nonempty open set. Let te f~'(U)ng~'(V). The quasicontinuity of g at ¢ implies
that a nonempty open set G <f '(U) exists such that g(G)c V. Hence G <
7 (Ung (V) So(f~'(U)ng (V) #0.

(b) Suppose g not to be quasicontinuous at te T. Then neighbourhoods V of
g(t) and W of t exist such that (¢~'(V)nW)°=@. Put f(W)=H. Then H is open
containing f(t). Thus

tef '(H)ng '(V)#40.
But

(f'(H)ng (V))°’=(Wng~'(V))°=4,

contradicting to the fact that f, g are equally distributed.

If in (b) the conditions that f is open and one-to-one are removed then
Proposition 1.2. (b) is not true.

Example 1.1. Put T=P=(— o, ©) with the usual topology and define

0 if te(—o,1),
f(t)={_t—1 if te(1,2),
1 if te(2, ®).
0 if te(—x,0),
g(t)= | xo where yo is the
characteristic function
of the set of all

national numbers in (0, 1),
1 if te(l, »).

Then f, g are equally distributed, f is continuous and g is not quasicontinuous.

Remark. It is also easily seen that (a) is not true if both f and g are supposed
only to be quasicontinuous. As an example one can take T=P=(—, »),
f=Xc=0, §=X<0. ).

The cligish functions are frequently studied as a generalization of quasicon-
tinuous functions if the range P is a metric space.

Recall that f: T— P (T is a topological space and P a metric space with the
metric @) is said to be cliquish at te T, if for any £>0 and any open set U
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containing t there exists an open set G# @, G < U such that o(f(t,), f(t.)) <& for
any t,, t,€ G. If f is cliquish at any t€ T, it is said to be cliquish.

Proposition 1.2 (a) may not be proved if the assumption that g is quasicon-
tinuous is substituted by the assumption that f is cliquish.

.Example 1.2 Let T=P=(0,1) with the usual topology. Put f(t)=t for any
t€(0,1) and let g be the Riemann function

L if tis ratibnal, t=E
.q(t)={

q q
0 if ¢ is irrational.

Then f is continuous, g is cliquish. Putting U=V=(0,1) we have
f'(U)ng '(V)=Q. Hence f '(U)ng '(V)#@, while (f '(U)ng '(V))°>=40.

Proposition 1.3. Let P be a Hausdorff space and f, g: T— P equally distri-
buted and coinciding on a dense set S = T. Then f(t)=g(t) for every te T.

Proof. Let te T, U, V be open sets containing f(t) and g(t) respectively.
Then f~'(U)ng '(V)#@, hence G=(f"(U)ng '(V))° #0. Choose t, e GNS.
We have f(t,)=g(t,) according to the assumption. Since f(t,)e U, g(t,)e V, we -
have UnV#@. But U, V are arbitrary open neighbourhoods of f(t) and g(t)
respectively. Since P is a Hausdorff space we have f(t)=g(t).

Corollary. Let P be a Hausdorff space. Let f, g: T—>P and let f be
continuous and g quasicontinuous. If f, g coincide on a dense set S T, then
f(t)=g(¢) for any teT.

A function f: T>R (R =(— o, ©) with the usual topology) is said to be
upper (lower) quasicontinuous at t,€ T if for any £ >0 and any neighbourhood U
of t, there exists a nonempy open set G U such that for any te G f(t) <f(t,) + ¢
(f()>f(t)—€)

Proposition 1.4. Let f: T— R. Then

(a) If f is lower quasicontinuous we have

sup f(SnG) =sup f(G)

for any nonempty open set G and any dense set Sc T.
(b) If f is upper quasicontinuous, then

inf f(SNG) =inf f(G)

for any nonempty open set G and any dense set Sc T.

Proof. We prove (a). Evidently sup f(SNnG)=sup f(G). Let y € f(G) and
€>0. We have y = f(t) where t € G. Choose a nonempty open set W c G such that
f(W)c(y — ¢, »). In the set W, there is t, € S. Hence f(t,) € S. Hence f(t,)>y — ¢,
f(t) € f(SNG). So to any ye f(G) and any £>0 there exists an element y, =
f(t)) € f(SNG) such that f(t,)>y — ¢. Hence sup f(SNnG)=Zsup f(G).
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Corollary. Let f: TR be a function which is both upper and lower
quasicontinuous. Let S be a dense set in T. Then for any nonempty openset G T
we have

sup f(SNG)=sup f(G)
inf f(SNG) =inf f(G)

Remark. If f: T—> R is quasicontinuous then the assertion of the above
Corollary is true.

The following example shows that the assertion of the Corollary does not
imply the quasicontinuity of f.

Example 1.3. Put T=P=(— o, ©) and

-1 if t<0
f(t)={ 0if t=0
1if t>0

Then f is both upper and lower quasicontinuous, hence the assertion of Corollary is
true, but f is not quasicontinuous at ¢t =0.

A set K in a topological space T is said to be quasiopen if K cK°.

We shall give a characterization of some types of quasicontinuous functions by
means of quasiopen sets. For some more special cases such a characterization is
known in the literature (see e.g. [1]). To describe from a common point of view
various types of quasicontinuity we shall use notions of ¥-quasicontinuity. (Such an
attitude in another connections was used in [5]).

Let Z be a set and ¥ a nonempty collection of subsets of Z such that for any
z€ Z there is Se€ ¥ such that z€S.

A function f: T— Z (T is a topological space) is said to be ¥-quasicontinuous
at t € T if for any S € ¥ containing f(¢) and any open set U containing ¢ there exists
a nonempty open set G c U such that f(G)cS. If f is $-quasicontinuous at any
te T, then it is said to be ¥-quasicontinuous.

In a quite natural way we define the notion of ¥-continuity. Thus f is
&-continuous at ¢t € T if for any S € ¥ containing f(t) there exists a neighbourhood
U of t such that f(U)cS. ‘

If Z is a topological space and ¥ is the collection of all open subsets of Z, then
&-quasicontinuity is the usual quasicontinuity and &-continutity is the .usual
continuity.

If Z=(—», ©) and & is the ollection of all intervals (a, ®), (— «, a), then
F-quasicontinuity gives the upper (lower) quasicontinuity.

If & is the mentioned collection of subsets of Z, then & is said to satisfy the
first countability axiom if to any z € Z there exists a decreasing sequence {S, },- of
subsets of & such that ze S, (n=1, 2, ...) and such that for any S € & for which
z € S there is S, with the property S,cS.
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Theorem 1.1. Let T be a regular (Hausdorff) topological space which satisfies
the first countability axiom. Let f: T— Z and let the collection & of subsets of Z
satisfy the first countability axiom at any z e Z. Then f is ¥-quasicontinuous at
a point te T if and only if a quasiopen set K containing ¢ exists such that the
restiction f| K is S-continuous at .

Proof. Let K be quasiopen containing t and let f| K be %-continuous at ¢. Let
S € ¥ be such that f(t) € S and let U be open containing t. The ¥-continuity of f| K
at t implies that an open neighbourhood U, of ¢t exists such that U,c U and
f(UinK)cS. Since UnK##, U, is open and K is quasiopen, we obtain that
a nonempty set G = U,nK exists. Thus

GcU, f(G)cf(UnK)cS.

The ¥-quasicontinuity of f at t is proved

Now let f be ¥-quasicontinuous at t. Let {S, },-, be the countable collection,
from the first countability axiom, for the point f(t). Let {U,}~-, be a countable
base at t with U,,,c U, for n=1,2 ... Choosing S, and U, we obtain from the
&-quasicontinuity at ¢ that there exists a nonempty open set G, ='U, such that
f(G\) = S.. If G,={t} then the proof of the theorem is trivial. So we may suppose
G, #{t}. Put U, =U,. Then there exists an element U,, (n.>n,) of the basis
{U,}7-\ such that G,n(U, — U,,) # 0. By the induction we can choose a subsequ-
ence {U,}~, and Gi¥0 (i=1, 2, ...), G: open, G, c U,, such that

f(G)<S; and Gn(U, —U,,)+0
(Note that in the case when U, = U, for every k, the proof is obvious.)
For the simplicity write W; instead of U,,. Further put
=Q(Gin(wi—w.+.)u{t}.

It is obvious that K is quasiopen. Let S € ¥ contains f(¢) and let S, be an element of

the sequence {S,}.-, such that S, = S. Let n> k. Choose the neighbourhood W,
of t. We have

W,,anQ(G,—n(W,- —W.))u{t) CQG,-u{z},

f(W"nK)cgf(G")u{f(t)} cS.cS.

Hence f|K is ¥-continuous at ¢.

Corollary 1. If T is a regular first countable topological space and f: T—
(— =, =) upper (lower) quasicontinuous function at ¢ then there exists a quasiopen
set K containing ¢ such that f| K is upper (lower) continuous at ¢.
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Note that the upper (lower) continuity is used for the simplicity to denote the
notion which is sometime called upper (lower) semicontinuity.

Corollary 2. If T is a regular first countable topological space and f: T—
(—, ®) a quasicontinuous function at ¢ then there exists a quasiopen set
containing ¢t such that f|K is continuous at .

If f is a quasicontinuous function at a point te T and K a quasiopen set
containing ¢ such that f| K is continuous at ¢, then K is said to be a representing set
of the quasicontinuity of f at the point t.

Given a collection f, (o € A) of quasicontinuous functions, we say that the
collection is comparably quasicontinuous at ¢, if there exists a quasiopen set K

containing ¢ such that K is a representing set for the quasicontinuity at t for every f,
(aeA).

2.

If nothing else is said in thlis part T denotes a topological space which is
separable, first countable and such that each subspace of T is separable. Further
(R, &, P) is supposed to be a probability space, N the collection of all sets N e &
with P(N)=0.

A collection {X.: te T} of random variables (real ¥-measurable functions)
which are defined on £ is said to be a stochastic process. The last may be
considered as a function X(t, ), of two variables, on T X .

In an analogical way to the continuous stochastic processes (see [6]) we define
quasicontinuous stochastic processes.

A stochastic process is said to be quasicontinuous (continuous) if X(¢, w) is
a quasicontinuous (continuous) function of the variable ¢ for every w € Q. It is said
almost surely quasicontinuous (almost surely continuous) if X(t, @) is quasicon-
tinuous (continuous for each w ¢ N, where N is some set belonging to .

Two processes X, Y are said to be equivalent (see [6] p. 1) if there exists for
each te T a set N, e N such that X(t, w)= Y(t, w) for every w ¢ N,. They are said
almost surely equal if there is a set N e & such that X(t, w)= Y(t, w) for every
every w ¢ N.

Further we say that X, Y are almost surely equally distributed if there exists
N e N such that X(t, w) and Y(t, w) are equally distributed for every w ¢ N.

Theorem 2.1. Let X, Y be two equivalent stochastic processes, which are
almost surely equally distributed. Then X, Y are almost surely equal.

Proof. Let Ne N be such that X(¢, w), Y(t, ) are equally distributed for
every wéN. Let S={s,: n=1, 2, ...} be a countable dense set in T. From the
equivalence of X and Y we obtain sets N, e ;' (n=1, 2, ...) such that

X(sn, @)= Y(s,, ) forevery wéN,
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Putting N*= CJ N., we have

n=1
N*e N and X(s,, w)= Y(s., w) forevery w ¢ N*

If we denote N=N*UN, then Ne A and X, Y are equally distributed for every
w ¢ N. According to Proposition 1.3. X(t, w) = Y(t, w) forevery te T and ¢ N.

Corollary. Let X be almost surely continuous, Y almost surely quasicontinu-
ous stochastic processes. Let X, Y be equivalent. Then they are almost surely
equal.

Proof. Under the assumptions there exists N € A" such that X is continuous
and Y quasicontinuous for every w ¢ N. Moreover if S={s,: n=1, 2, ...} is any
countable and dense set in T, there exist N, e N (n=1, 2, ...) such that

X(8., w)=Y(s,, w) forevery w é N* = ON,. andn=1,2, ...
n=1

Putting N=NUN* we have Ne# and X(t, w) and Y{(t, ®) coincide on
a countable set for every w ¢ N. According to Corollary of proposition 1.3 we have
X(t, 0)=Y(t, w) for every w ¢ N and every te T.

Remark. An evident consequence of Corollary is the well known fact (see e.g.
[6] p.2) that two equivalent almost surely continuous stochastic processes are
almost surely equal.

Note that the last corollary is in general not true if X, Y are supposed only to
be quasicontinuous.

Example 2.1. Let T=Q = (0, 1) with the Lebesgue measure and the usual
topology. Put

0if t=w,
X(s, “’)‘{1 if t>0,
0if t<w,
i, “’)={1 it 120,

Then X, Y are quasicontinuous, but they are not almost surely equal.

A stochastic process X is said to be separable (compare [6] p. 26) if there exist
a countable set S < T such that for each closed interval I = (— «, ©) and every
open set G T

{weQ: X(t, w)el forevery te G} = {w: X(s, w)el forevery seSNG)}

Sometime we say more strictly that the process is separable with restect to the
countable set S.

In an obvious way an almost surely separable stochastic process X with respect
to S is introduced. X is said to be almost surely separable (with respect to S) if
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there exists a countable dense set S = T and a set N € A such that X considered on
T X (2 — N) is separable with respect to S.

Proposition 2.1. Let X be a quasicontinuous (almost surely quasicontinuous)
stochastic process. Then X is separable (almost surely separable) with respect to
any countable dense set Sc T.

Proof. According to Proposition 1.4 (see also Corollary and Remark after
that proposition) we have for every countable dense set Sc T and for any
nonempty open set G T

inf X(t, w)= inf  X(t, w), sup X(t, w)= sup X(t, w). @)
teG teSNnG 1eG 1eSNG
Let I ={a, b) be any closed interval. From (1) it follows that if a = X (¢, @)= b for
every te SNG, then a= X(t, w)=b for every t € G, the converse being obvious.
Thus X is separable.

Remark. From the proof we can see that it is sufficient to suppose in
Proposition 2.1 the simultaneous upper and lower quasicontinuity of the process X
(i.e. the upper quasicontinuity and the lower quasicontinuity of X (¢, w) for any
w € Q). Note further that the proof of Proposition 2.1 was given only for the
quasicontinuous processes. The case of almost surely quasicontinuity is similar.

Theorem 2.2. Let X be an almost surely separable stochastic process and Y
an equivalent to X almost surely continuous stochastic process. Then X and Y are
almost surely equally distributed.

Proof. From the assumptions it follows that there exist a set Ne A and
a countable set S={s,: n=1, 2, ...} such that the following is true:

1) X(s., w)=Y(s,, w) for n=1,2,..., wéN

(2) Y(t, w) is continuous for w é N,

(B){wéN: X(t, w)el for every te GNS}={wéN: X(t, w)el for every
te G}, where G is any open set.

Let U, Vc(—, ») be open und let w ¢ N. Suppose that (for w fixed)
X '(UAY '(V)#0. With no loss of generality we may suppose that
X'((a, b)Y '((c, d))#0, where (a,b)cU and (c,d)cV. Let
toe X '((a, b))n Y '((c, d)). According to (3) the set Y™ '((c, d)) isopenin T. Put
Y '((c, d)) = H. From the condition (1) we have

X(SnH)=Y(SnH)c(c,d)c V.

From the last and from (3) we obtain X(H)c(c,d)<V. In particular
X(to, w)€e V. Since X(t,, w)e U too, we have UnV#@. Put Z=UnV. Then
H,=Y'(Z) is an open set and

X NZ)NY (Z)> {1} #9.
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By means of an analogical consideration as above, substituing both U and \%
by Z, we obtain a nomempty open set W such that

X(W)cZ=UnV, Y(W)cZ=UnV.

Thus (X '(U)N Y '(V))° 0.

Corollary. Let X be almost surely separable and Y an equivalent with X
almost surely continuous stochastic process. Then X, Y are almost surely equal.

Proof. Apply Theorem 2.1.

Remark. In Corollary the condition of almost surely continuity may not be
substituted by the almost surely quasicontinuity. It can bee seen from Example 2.1.

The notion of the stochastic continuity used in the theory of the stochastic
processes (see [6] p.21) may be in some cases substituted by a more general
notion.

We say that a stochastic process X is stochastically quasicontinuous at ¢, if for
any £ >0 the function

¢.()=P({w: | X(t, ®) — X(t, w)| Z €}

is quasicontinuous at f,. It is said to be stochastically quasicontinuous if it is
stochastically quasicontinuous at any te T.

Recall that the stochastic continuity is defined by means of the notion of
continuity of the function @.. Evidently any stochastically continuous process is
stochastically quasicontinuous and the converse is not true.

The stochastic process is said to be comparably stochastically quasicontinuous
at t, if the collection {@.} (¢>0) is comparably quasicontinuous at f,.

It is again an obvious fact that the comparable stochastic quasicontinuity
follows from the stochastic continuity and the converse is not true.

Theorem 2.3. If a stochastic proces X is almost surely separable and compar-
ably stochastically quasicontinuous then it is almost surely separable with respect to
any countable dense set Sc T.

Proof. Let S be any countable dense set in T and let t,e T. From the
comparable quasicontinuity of {@.} at t, it follows that a quasiopen set K
containing t, exists such that ¢, | K are continuous at ¢,. Since K is quasiopen and T
is first countable we have that a sequence { }z-, of elements belonging to K exists

such that ’!inl t =t,. Thus ‘l(irr’15 @ (t.) = . (1), giving
ll(l—IIL P({w: lX(tk, (D)—X(t(), w)lZE})=() (1)

By (1) and the well known Riesz theorem there exists a subsequence of the
sequence {& }r-, (we do not give a new notation for these subsequence) and a set
N, € N such that
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lim X(t, w)= X(t,, w) if wéN,,.
Kk »x

Since X is almost surely separable there exists a countable dense set S, T
and a set N e A such that for any open set G and any closed interval I

{0eQ—N: X(t, w)el for every te G} = {weQ—N: X(t, w)el for every
teSNG) (2)

According to what was proved above, for any s € S, there exists a set N, e A
and a sequence {t,}.-, of elements belonging to S such that
lim X(t,, w)=X(s, w) if wéN, (3)

n—s

Put

N=NU[JN.
n=1

We have NeN. By (3) we have X(1, w)el for every te SeanG and by (2)
X(t. w) eI for every t e G. Thus the almost sure separability of X with respect to S
is proved.

Corollary. (See [6] p. 37). Let X be a stochastically continuous almost surely
separable stochastic process. Then it is almost surely separable with respect to any
countable dense set Sc T.
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SUHRN
‘KVAZISPOJITE PROCESY
Tibor Neubrunn, Bratislava
V praci sa ukazuje, Ze mozno pouzit kvazispojité funkcie pri $tiudiu stochastickych procesov.
Zavadza sa pojem kvazispojitého a stochasticky kvazispojitého procesu. Dokazuje sa niekolko tvrdeni,
v ktorych spojitost sa nahradzuje kvazispojitostou a ziskavaju sa tak zovSeobecnenia niektorych
znamych tvrdeni zo stochastickych procesov.
PE3IOME
KBA3HWHEITPEPBIBHBIE ITPOLIECCHI
Tu6op HoibpyH, Bpatucnasa
B pa6oTe moka3zaHa BO3MOXHOCTb BOCHOJIb30BaThCH KBAa3WHENPEPLIBHBIMH (DYHKLUHMAMHU MPH
W3YYEHHH CTOXAaCTHYECKHX MpoleccoB. BBeieHO MOHATHE KBA3WHEMPEPBHIBHOTO M CTOXAaCTHYECKH

KBa3HHENpPEPBLIBHOTO npoleccoB. JIOKa3aHO HECKONbKO YTBEpXIeHHH 0606LIalolMX Ha OCHOBAHHMH
KBa3HHENPEPLIBHOCTH HEKOTOPbIE YTBEPXK/ICHUS H3BECTHBIE B TEOPUH CTOXACTHYECKHX MPOLIECCOB.
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