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NOTES ON LATTICE — VALUED MEASURES

BELOSLAV RIECAN, Bratislava

The present notes are inspired by the Fremlin proof [1] of the earlier
Wright’s results [10]. We give a new presentation of some results concerning
Carathéodory’s measurability [5]. These results work in so called weakly
(o, =)-distributive vector lattices, introduced and studied by J. M. D Wright [1].
While in these papers the authors work with concrete representations of studied
spaces, we deal following D. H. Fremlin with direct algebraic methods only.

Of course, our results are more general, too. Actually we study lattice group
valued measures, even a little more general objects. The algebraic methods seem to
be more economical. Simultaneously we prove an extension theorem for subaddi-
tive measures and the Choquet continuity lemma for induced outer measures.

1. An analogy with the real case

Let G be a commutative, partially ordered group satisfying the implication
x=Sy=>x+z=y+z. G is called monotonously o-complete, if every increasing
bounded sequence (a;); has the supremum \/a; and hence every decreasing
bounded sequence (a;); has the infimum A, too. Sometimes we shall assume
moreover that G is a boundedly o-complete lattice-ordered group (I-group), i.e.
that G is moreover a boundedly o-complete lattice (every bounded sequence (a;);
has the sumpremum \/a; and the infimum Aa;); such a group is commutative
automatically.

By a G-valued measure we mean a mapping u: ® — G defined on a ring R of
subsets of a set X satisfying the following conditions:

1. u(E)=0 for every E€ & ; u(9)=0.

2. u is o-additive, i.e. u(E)= Y, u(E) for every E € ® and every sequence
n=1
(E)): of pairwise disjoint sets of & such that E = OE.—. (The symbol > a; (where
i=1 n=1
a;Z0) means (/ Zai).
n=1i=1
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Evidently an additive non-negative mapping u: #— G is a measure iff y is
continuous from below and from above and it is iff u is continuous from above in .
On the other hand pu is additive iff u(@)=0 and u(A)+u(B)
= u(AuB)+ u(AnB) for every A, BeR.

As we know the notion of a vector lattice valued measure was first studied in
[6], in the case of a group in [3]. Of course, the definitive results were formulated
and proved a few years later [10]. A great part of the theory can be built in full
analogy with the real case.

Assumptions. In this section G is assumed to be a monotonously o-complete,
commutative partially ordered group. u is assumed to be a mapping u: — G
defined on an algebra of subsets of X, continuous from below and from above,
subadditive, monotone and u(#)=0 (u will be called shortly a submeasure).

As in the real case the following lemma can be proved.

Lemma l. If A,, B,.e®, A,/ A, B,/B (or A,\\A, B,\\B resp.) and
A c B, then \u(A,)=Vu(B.,) (or Au(A,)= Au(B.) resp.).
This lemma permits to define R ={BcX; A, eR, A,/ A}, u'(B)=

V u(A,), BeR" and analogously R, u~. In the following lemmas we list the
properties of u*, u”.

Lemma 2. The sets R*, R~ are lattices, the mappings u*, u~ extend u and
they are monotone and subadditive. If AeR*, BeR™, then A\Be®R",
B\Ae®R and

u'(A)=p'(A\B)+u'(B),
u (B)=u (B\A)+u*(A).
If moreover A o B, then u*(A)=u (B).

Proof. The assertions are evident. Observe that the last property is
a consequence of the preceding one, since then B\ A =0 and u™(0)=pu(9)=0.

Lemma 3. If A,”A (or A.\\A resp.) A,eR" (or A,e R resp.) then
AeR* (or AeR ™ resp.) and u*(A)=Apu*(A,) (or p (A)=Au(A,)). The

map p” is o-subadditive, i.e. A c|JA, implies u*(A)= D u*(A,).
n n=1
Proof. The first assertion can be proved by a standard way (A, ./ A, implies
UA.. ./ A), the second one is a consequence of the continuity of u* from below

i=1

and the subadditivity of u*.
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2. The key — the weak o-distributivity

Now we cannot continue in an analogy with the real case. Of course, we could
put (if G is boundedly complete, which is a reasonable assumption)

u*(A)=A{u*'(B); Be®R",BoA} AcX

similarly define ux and study the set L of those sets A = X for which u*(A)=
ux(A). In the real case A € L iff to every € >0 there are Be R*, Ce R~ such that
CcAcB and u(B\C)<e. But this characterization is impossible in general
vector lattices. Therefore we shall give a modification of the Fremlin definition.
Definition 1. We shall say that A e L if there is a bounded sequence of
sequences (a;);>, such that a; \,0 (j— ) and there is x € G such that for every
sequence @ € N" there are B, e R*, C, € & such that C,c A c B, and

' (BNC)=Vawn, n(G)Sx=p'(B,).

(In the real case one can put a; =% Then e.g. for @(i)=j,"i=1,2, ... we

obtain \/a;¢(i)= 1/j.) Now the weak o-distributivity enables us to identify the

e-definition with the usual supremum — infimum definition.

Definition 2. Let G be a monotonously o-complete, commutative partially
ordered group. We shall say that G is weakly o-distributive, if whenever (a;); ; is
a bounded family of points of G such that a;\\0 (jo>», i=1,2,...), then

/\N vaiw(i) =0.
@eNN

In the real case to every € >0 there is @(i) such that for every j = (i) we have

a; <¢e, hence putting @:i— @(i) \/aiw(;)és for every €>0 and therefore

A Vaixiy=0. Also every regular K space (see [9] (i.e. Riesz space with the
¢ i

diagonal property see [4])) is weakly o-distributive. So the results of [6] are special
cases of the results of [10].

Proposition 1. Let G be a weakly o-distributive, commutative partially
ordered group. Let A € L, x € G be the element mentioned in Definition 1. Then

x=A{u"(B);BeR",BoA}=\/{u (C);CeR,CcA)}.
Proof. If Ce R, Cc A, then Cc B, hence by Lemma 2

p(O=u (B)=p"(Bo\Co) +u (CG)=Vaiwn +x,
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u(C)—x= '\/aiq,(;).

Since the last relation holds for every @, the weak o-distributivity gives u (C) —
x =0, hence the element x is an upper bound of the set

{(u (C);CeR ,CcA).

We have to prove that x is the least upper bound of the set. Let y be another upper
bound. Then y=u (C,), hence

x—=y Sx-— M_(Cw)§ H+(Bu') - M_(Cw) §u+(Bw \ Cq)§ Vaiqv(i)-

A similar argument as before implies the relation x — y =0 and the second formula
is proved. The first one can be proved similarly.
The element x will be denoted by u*(A).

3. The second step — a regularity property

o

. ' €
In the usual e-technique one can use the equality £ = 2 5
i=1

In the general case
we can substitute this property by the following one.

Definition 3. A commutative, monotonously o-complete, partially ordered
group G satisfies the condition (P), if to every bounded family of sequences (a,;);
such that a,;\N0 (j> o, n, i=1,2,...) and every a>0 there is a bounded

sequence a; \\0 (j—>o, i=1, 2, ...) such that for every ¢ € N¥

al\(z V an.i.q‘(i+n))§‘\/ aiqw(i)-
i=1

n=1i=1

Proposition 2. Every boundedly o-complete [-group satisfies the condition
(P).

Proof. [7], Proposition 1.

Proposition 2 for vector lattices has been proved by D. H. Fremlin [1].

The group valued measure extension theorem has been proved in [7].
Therefore we present here only the main idea. Of course, this idea is due to D. H.
Fremlin.

If A,/A and A, €L, then also A,\A,_,eL (which is not so difficult to
prove) and (with a corresponding ordering of quantifiers)

u*(A, \Anfl);—l‘_(cn)=l»‘+(3n)“ p'(B.\C)Zu*(B,)— V Anig(i) »

where B, e ®*, C,e R and B,>A,\A,_,oC,. Then
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W (A)=Y 3 HHANA)Z

o

=3 1w (B) = AT V aue) 2

n=1i=1

= H+(UBn) - \=/| Uig(i

what gives an upper approximation for u*(|_JA,) =\ u*(A,), the construction of

a lower approximation being quite easy, too.
We did not present details here since we shall return to this subject later in
connection with a submeasure extension theorem.

4. Choquet’s lemma

Let us return to Sections 1 and 2. We have seen (Proposition 1) that for A e L
there exists

u*(A)=A{u"(B); BoA,BeR"}.

If G is boundedly complete then u*(A) can be defined by the formula for every
A c X. For the sake of simplicity we assume that X € &. The Choquet lemma
says that A, /A > u*(A.)./ u*(A). Let us formulate and prove this theorem in
a general lattice-valued case.

Definition 4. A boundedly o-complete [-group G is weakly (o, ®)-dis-
tributive, if whenever L is an infinite set and (b..\).en.1ec is @ bounded family of
points of G such that A b, , exists for each n, then

Ael

V A bus= AV bagen:

n=1 AelL @el n
Proposition 3. Let G be a boundedly o-complete [-group. Let a, ..€eG

(n,i=1,2,..., AeL) be such elements that A a,.,=0. Then to every a>0

AelL

there are a; , bounded (i=1, 2, ..., AeL) such that A a,,=0 and

AeL

®

0/\<2 V An.i, w(i+n))§‘\/ Ai. (i) -
n=1i=1 i=1

The proposition can be proved similarly as Proposition 2 in [7]. Since the proof
is quite large, we present here only a proof in the case that G is a linear space. In

185



this cases it suffices to put b,,= 2, 2*axi-«x.1», aia=aAb.. Then (putting
: k=1

A=@(i), i—k=])

k —k W
2 ak.i—k.w(i)ébi. (i) akj.q;(kﬂ)éz V b:. (i)
i=1

aA(E V ak,j_.,,(i+k,>§a/\(2 2_k
k=1 j=1 k=1

Theorem 1. Let G be a weakly (o, ®)-distributive, boundedly complete
l-group. Let u be a measure on an algebra R of subsets of a set X. Then for any
A, c X, the relation A,/ A implies u*(A,) /" u*(A).

Proof. For every Bo A,, Be R" we have

u'(B)=pu*(As) +u"(B) — u*(An).

Putting L=R", a,..s=pu"(B)—u*(A,) if BoA,, a,..s = u'(X)—u*(A,) in
the opposite case, we obtain

/\ a,:.8=0

BelL

and to every @ € L™ and every n there is B,e R*, B, o9, such that

pu'(B)= u*(A,.) + \\=/] An,i. @i+n)-

Put C, = B.. By the induction the following relation can be easily proved:

i=1

u (C)=u*(A)+ ; Y Qi k. @k+i) -

IIA

By Proposition 3 there are a; ;\\0 (j— ) such that M(X)A(Z V a,.i ,,(,~+,.,)
V ai. 4, hence (see Lemma 3)
wa)=u(U a)sw'(Uc)=
=V w(GISV u*(A)+HOOA(T Y ik oo S
=V H*(An)'*'v Qi o)

186



Since
u*(A)— \"/ “*(An)é‘\’/ ai. o)
holds for every @ € LY, by the weak (o, «)-distributivity we have
| BH(A) -V (A S0.

The opposite inequality is evident.

Observe that there is another point of view in the theory of lattice-valued
functions. Instead of algebraic means one can work with positive ‘functionals.

Proposition 4. Let G be a boundedly complete /-group of countable type. Let
the set F of all positive, linear, order-continuous functionals separates points (i.e.
x#y = 3feF, f(x)#f(y)). Let u: #— G be a measure, let & be an algebra.
Then A, /A = u*(A,) ./ u*(A).

Proof. First observe that fou: #— R is a measure and (fou) =fou". If
Be®R*, Bo A, then

f(u*(A)=f(u"(B)) = (fou)"(B),

hence

f(u*(AN=(fon)*(A).

Since G has the countable type, there is a sequence (B,). such that B, > A and
p*(B.)\ u*(A). Therefore

f(u*(A) = Af(u"(B)Z(fou)*(A).
Hence we have obtained the equality fou*=(fou)*. Now A, /' A implies
f(u*(A)) =(fon)*(A)=sup (fou)*(A.) =
= sup f(u*(AN)=f(V u*(An).
Since the last equality holds for every f e F and F separates points of G, we obtain

u*(A)=Y u*(A).

S. Carathédory’s subadditivity lemma

The classical Carathéodory method starts with a measure u, extends it to an

outer measure u* and then restricts u* to the family & of all sets A intersecting
regularly every set E c X:

u*(E)=p*(AnE)+u*(E\A).
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Then & is a o-algebra and pu*| ¥ is a measure extending u.

In our general case the mapping *u may be constructed and one can prove that
for every outer measure & is a o-algebra and u*| ¥ is a measure. Finally if p* is
induced by a measure yu, then one can prove that u* extends u. The only problem is
to prove that the induced mapping u* is an outer measure, i.e. that u* is
o-subadditive.

Theorem 2. Let G be a boundedly complete, weakly (o, ©)-distributive
[-group, u: R#— G be a measure, R an algebra. Then

pt(U A)= S wr(A)

for every A, c X.
Proof. Evidently u* is subadditive. Indeed,

u*(E)+u*(F)=A{u"(E\); E.e R, E,.oE} +
+A{u*(F); FleR*, FioF}=
=A{u*(E)+u*(F); E,Fe®" E>oE FoF}2
ZA{u'(H); HeR", H> EUF}=pu*(EUF).

Therefore by Theorem 1 (Ln) A/ U. A.-)
. i=1 i=

©

p(UA)=\V u(UA)sY X ura)=3 u(A).
i=1 n=1 i=1 n=1i= i=

The same proof can be applied also in the case of the variant of the Choquet
lemma presented in Proposition 5.

Proposition 5. Let G be a boundedly complette [-group of countable type.
Let the set F of all positive, linear, order-continuous functionals separate points.

Let u: # — G be a measure on an algebra . Then u*(o A,.) = u*(A.)forall
n=1 n=1

A, cX.

The main result of this section presented in Theorem 2 was first proved by
T. V.Panchapagesan and Shivappa Veerappa Palled. Of course, the proof
presented in the section is purely algebraic and more general. Our theorem works
in [-groups while P—SVP theorem was formulated only for vector lattices.

Of course, the Carathéodory method was generalized for groups also by
P. Volauf in [8]. P. Volauf proves the Carathéodory subadditivity lemma
under the following assumptions: G is a complete [-group of countable type such

that for every a; \\O (j— «) and every b=0 from the relation bé\/ Aipiy for
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every @ € N" it follows that b = 0. Evidently G is weakly o-distributive and since G
has countable type, G is weakly (o, ®)-distributive, too. Hence in vector lattices
the Volauf result is a consequence of the mentioned result of Panchapagesan
and Palled.

There is a paper by S. K. Kundu on the Carathéodory method in [-groups
[3]. Unfortunately some of this proofs are incorrect and so his main result does not
hold. He supposes only (in our notations) that G is a boundedly complete [-group,
u: R— G is o-subadditive, monotone, u(0) = 0, continuous from below and from
above and defined on an algebra. (It is interesting that the assumptions are the
same as our ones listed in Section 1.)

Theorem 4.1 of [3] asserts that to every A = X there is C € R such that Cc A
and u*(C)=u*(A). This assumption does not hold. We can see it in the following
example.

Let R be the ring generated by the family {{(a, b); a, be R, 0Sa<b=1}.
Put A = (% %) Then for Cc A, Ce R, C=.L"J| (ai, B:) (@i, Bi) being pairwise
disjoint we obtain

w(©)=3, (6 ~a)<y-5=u*(A).

Hence there is no Ce R, Cc A with u(C)=pu*(A). The error is situated in the
choice of C, since the set C=|J{B; Bc A, Be R} need not belong to R.

The second error can be found in Theorem 5.2 asserting that to every A € &
there is B € R such that A = B and u*(A) = u(B). Consider the preceding example
and put A the set of all rational numbers in (0, 1). Then u*(A)=0 but Be R,
B o A implies B=(0, 1), hence u(B)=1. There is an error is in the proof of
Theorem 5.1. It is not true that

u*(A)=A{u(B); AcB,BeR}.
It holds only the inequality
u*(A)=inf {(n*(C); AcC,CeR"}=inf {u(B); AcB,Be®R}.

Finally, when the Kundu result would hold, the measure extension theorem
would be true in every boundedly complete vector lattice. But we know that the
weak o-distributivity of G is not only a sufficient, but also a necessary condition for
extending every G-valued measure.

6. Submeasures

Definition 5. Let u: #— G be a submeasure (see Assumptions in Section 1).
We shall say that u is exhausting, if for every sequence (D,)., D.€ R, D, = D,.,
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(or D,>D,., resp.) it holds

AV w(D\D)=0 (or AV u(D\D,)=0 resp.).

Theorem 3. Let G be a monotonously o-complete, weakly o-distributive,
commutative, partially ordered group satisfying the condition (P) (Definition 3).
Let ® be an algebra of subsets of a set X and let u: #— G be an exhausting
submeasure. Then on the o-algebra o(R) generated by R there is exactly one
submeasure fi: 0(R)— G extending pu.

Proof. In Sections 2 and 3 we have constructed an extension u*: L —» G. Now
we prove that L is a monotone family, i.e. A, A (or A, \\A resp.), A, €L
(n=1,2,..) implies AeL.

Let A,eL (n=1,2,..)), A, /A, a,.€G be such that a,,;\\0 (j— ).
Choose a;.;\\0 (j— ) according to the condition (P). Let e N¥, B,e R*,
C.eR,C,cA.cB, (n=1,2,...) and

“'+(Bn \ (j")é \/ An.i.gli+n)» M_(Cn)é u*(An)§ M+(Bn)'

Then

Ucex, UJBen,
i=1 i=1

) GCAHCL’IJBio
= i=1

i=1

(OBAC)EE Y
i=1 i=1 k=1 i

Put B= DB,.. Then BeR* and there are D,e R such that D,.cL"JB,- and
n=1 i=1
D, /' B. Since u is exhausting, we have

A u"(B\D;))=0.
J
Therefore there is a,.; ;\0 (j— ) such that for every ¢eN" there is n with

u+(B \D,.)é ‘.‘./ Ao.i. @(i) -

We obtain

u*(B\Q C)Su(X)A G (B\D,) + u*(L"JB,-\L"JG))é

i=1 i=1
¥ n
5#(X)/\(‘\/ Ao i oyt 2 Q. i, w(kﬂ'))é"\/ Ai. (i)
i k=1 i
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'f(:,c")é';/ W (CI=V ur(A)=V w'(B)=u'(B).

UJGecAa=JA,<B,.
i=1 n

hence A = CJ A, € L. Moreover u*(A)= \G/ u*(A,), hence u*(A,), u*(A).
n=1

n=1

The implication A,\VA, A,eL (n=1,2,...) > AeL can be proved
analogously. Moreover, u* is on L continuous from above.

Since L is a monotone family over %, L contains the o-algebra o(®R)
generated by R, hence i =pu*|o(R) has all claimed properties.

The uniqueness of the extension is an easy consequence of the continuity of
submeasures.

Remark. Note that usually exhausting submeasures are defined by another
way (D, c D,+1 & u(D..,\D,)—0). Observe that in the so-called almost regular
vector lattices (i.e. such lattices that the order convergence is equivalent with the
regulator convergence) these two formulations are equivalent.
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SUHRN
POZNAMKY O MIERACH S HODNOTAMI VO ZVAZOCH
Beloslav Rie¢an

Cisto algebraickymi metédami sa dokazuje Carathéodoryho veta o rozsireni miery, veta
o rozireni submiery a Choquetova lema o spojitosti nahor vonkajSej miery indukovanej mierou.
Oborom hodnét miery je zvizovo usporiadana grupa spliiajica niektoré podmienky distributivnosti.

PE3IOME
3AMETKA O MEPAX C 3HAYEHUWSIMU B CTPYKTYPAX
Benocnas Pueuan

Ynucro anreGpandeckMMHM METONAaMH JOKa3biBaeTcs Teopema KapaT3ofopu O NpofoKeHHH

Mepbl, TEOpEMa O NMPOAOJIKEHHH Monymephl H ieMMa 1lIok3 0 HenmpepbIBHOCTH BBEPX BHEILHEH MepbI

nopoxnaeHHoi Mepoil. O6GnacThio 3Ha4YeHHH Mepbl SBIAETCA CTPYKTYPHO YNOPSAOYEHHAs rpynmna
BBITIONTHAIOLIANA HEKOTOPbIE YCIIOBHA AHCTPHOYTHBHOCTH.
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