

Werk

Titel: Ukrainische Graveure in Moskau im 17. und 18. Jahrhundert

Autor: Si?yn?kyj, W.

Ort: Mainz

PURL: https://resolver.sub.uni-goettingen.de/purl?366382810_1942-43|log30

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XLII—XLIII—1983

A WEAK LAW OF LARGE NUMBERS FOR VECTOR LATTICE—VALUED RANDOM VARIABLES

RASTISLAV POTOCKÝ, Bratislava

I continue to investigate random variables which take their values in a vector lattice. In an earlier paper [1] I defined the weak law of large numbers and gave some sufficient conditions for a sequence of such random variables to satisfy it. In the present case I am interested only in identically distributed random variables.

In what follows I shall consider functions with values in an Archimedean vector lattice E. My terminology will follow [1] and [2].

Definition 1. Let (Z, S, P) be a probability space. A sequence $\{f_n\}$ of functions from Z to E converges to a function f almost uniformly if for every $\varepsilon > 0$ there exists a set $A \in S$ such that $P(A) < \varepsilon$ and $\{f_n\}$ converges relatively uniformly to f uniformly on Z - A.

Definition 2. A function $f: Z \to E$ is called a random variable if there exists a sequence $\{f_n\}$ of countably valued random variables such that $\{f_n\}$ converges to f almost uniformly.

Definition 3. Let E be an Archimedean vector lattice. E has the σ -property if for every sequence $\{x_n\}$ of the positive elements of E there exists a sequence $\{a_n\}$ of positive real numbers such that the sequence $\{a_nx_n\}$ is bounded.

Proposition 1. Let E be an Archimedean vector lattice with the σ -property. Then the vector lattice of all random variables is closed with respect to the almost uniform convergence.

Proof. Analogous as in [3], p. 283.

Proposition 2. Let E be a F-lattice. Then each random variable is a measurable map from Z to E.

Proof. Since E has a monotonous F-norm $\| \|$, the inequality $|f_n(z) - f(z)| \le a_n b$ implies $||f_n(z) - f(z)|| \le ||a_n b||$. Since $||a_n b|| \to 0$ whenever $a_n \to 0$, we have that $f_n(z) \to f(z)$ in F-norm for each $z \in \mathbb{Z}$ except possibly a set of probability 0. The result follows from [4], prop. 2.1.3.

Definition 4. A sequence $\{f_n\}$ of random variables satisfies the weak law of large numbers, if there exists an element $a \in E^+$ such that for every $\varepsilon > 0$

$$\lim_{k} P\left\{z; \left| k^{-1} \sum_{i=1}^{k} f_{i}(z) \right| \leq \varepsilon a \right\} = 1.$$

Theorem 1. Let E be a σ -complete F-lattice with the σ -property. If f_n are pairwise independent, identically distributed, symmetric random variables in E, then the condition

$$\sum_{n=1}^{\infty} P\{\dot{z}; |f_1(z)| \leq na\}^C < \infty \text{ for some } a \in E^+$$

is sufficient for $\{f_n\}$ to satisfy the weak law of large numbers. (C stands for the set somplement.)

Proof. In what follows we omit a set of probability 0, if necessary. For each n let $\{f_n^k\}$ be a sequence of countably valued random variables converging almost uniformly to f_n . Because of the inequality

$$|f_n| \leq |f_n - f_n^k| + |f_n^k|$$

which holds for each natural n and k and the assumption that E has the σ -property we can regard all f_n as random variables in a principal ideal of E (i.e. the ideal generated by a single element, say $u, u \in E^+$) $I_u, a \le u$. Since the positive cone of E is closed, $I_u = \bigcup_{n=1}^{\infty} \langle -nu, nu \rangle$ is a Borel set in E. Hence f_n are pairwise independent, identically distributed and symmetric random variables in I_u .

Since E is σ -complete vector lattice, I_u equipped with the order-unit norm (i.e. the norm induced by u) is a Banach space (even Banach lattice). It will be denoted by $(I_u, || ||_u)$. It is well-known that in such a lattice the norm-convergence and the relatively uniform convergence are equivalent.

Let us denote by $\{y_n\}_1^{\infty}$ the set of all values which the above mentioned countably valued random variables f_n^k take on. Put $y_0 = u$. Consider the countable set

 $A = \left\{ \sum_{i=0}^{n} a_i y_i ; n = 0, 1, \dots \right\}$ of all linear combinations of y_i with the rational coefficients a_i . The set

 $B = \bigcap_{r \in Q} \bigcup_{u \in A} \{x \in I_u; |x - a| \le ru\}$ is a linear subspace of I_u . (Q stands for the set all rational numbers.) This follows from the inequalities

$$|x+y| \leq |x| + |y|$$

and

$$|ax - by| \le |a - b| |x| + |b| |x - y|$$

It is obvious from definition 2 that all f_n take on only values in B. Equipped with the norm $\| \|_u$, B becomes separable Banach space. Indeed for each $x \in B$ and each

 $\varepsilon > 0$ there exists and element $a \in A$ such that $||x - a||_u < \varepsilon$. The completeness follows from the fact that B is closed in $(I_u, || \cdot ||_u)$.

From now on this space will be denoted by $(B, \| \|_u)$. It remains to prove that f_n will maintain all the properties mentioned above. Since B is separable, its Borel sets are generated by open balls. Denote these Borel sets by W_s . For such a ball we have

$$\{x \in B \; ; \; ||x - x_i||_u < \varepsilon \} = \bigcup_n \{x \in B \; ; \; ||x - x_i||_u \le \varepsilon (1 - n^{-1})\} =$$

$$= \bigcup_n B \cap \{x \in I_u \; ; \; ||x - x_i||_u \le \varepsilon (1 - n^{-1})\} =$$

$$= B \cap \bigcup_n \{x \in I_u \; ; \; ||x - x_i|| \le \varepsilon (1 - n^{-1})u\} \; .$$

Denote by W_T the σ -algebra generated by subsets of B open with respect to the original topology. We have proved that $W_S \subset W_T$. It means that f_n are pairwise independent, identically distributed and symmetric random variables in $(B, \| \|_u)$.

Consider now the random variable f_1 . We have

$$E \|f_1\|_u \le 1 + \sum_{u=1}^{\infty} P\{\|f_1\|_u > n\} = 1 + \sum_{n=1}^{\infty} P\{|f_1| \le nu\}^C < \infty$$

It follows by using [4], th. 4.1.5 that $\{f_n\}$ satisfies WLLN in B and consequently in I_n . It means that

$$\lim_{n} P\Big\{z \in Z; \left\|n^{-1} \sum_{i=1}^{n} f_{i}(z)\right\| \leq \varepsilon\Big\} = 1 \text{ for each } \varepsilon > 0,$$

since f_n are symmetric. The above equality can be rewritten as follows

$$\lim_{n} P\left\{z \in Z; |n^{-1} \sum_{i=1}^{n} f_{i}(z)| \leq \varepsilon u\right\} = 1$$

owing to the property of the order-norm.

REFERENCES

^[1] Potocký, R.: Weak laws of large numbers in certain vector lattices. Acta F.R.N. Univ. Comen., to appear.

^[2] Fremlin, D. H.: Topological Riesz spaces and measure theory. Cambridge, 1974.

^[3] Cristescu, R.: Spatii liniare ordonate is operatori liniari. Bucuresti 1970.

[4] Taylor, R. L.: Stochastic convergence of weighted sums of random elements in linear spaces. Springer, Berlin 1978.

Author's address:

Rastislav Potocký

Katedra teórie pravdepodobnosti a matematickej štatistiky MFF UK

Received: 31.8.1981

Mlynská dolina 842 15 Bratislava

РЕЗЮМЕ

СЛАБЫЙ ЗАКОН БОЛЬШИХ ЧИСЕЛ ДЛЯ СЛУЧАЙНЫХ ВЕЛИЧИН С ЗНАЧЕНИЯМИ В ВЕКТОРНОЙ РЕШЕТКЕ

Растислав Потоцки, Братислава

В работе доказывается достаточное условие для того, чтобы последовательность одинакого распределенных случайных величин удовлетворяла слабому закону больших чисел.

SÚHRN

SLABÝ ZÁKON VEĽKÝCH ČÍSEL PRE NÁHODNÉ PREMENNÉ S HODNOTAMI VO VEKTOROVOM ZVÄZE

Rastislav Potocký, Bratislava

V práci sa dokazuje slabý zákon veľkých čísel s hodnotami vo vektorovom zväze.