

Werk

Titel: Il principe Dell' Anatomia G.B.Morgagni e i suoi Editori

Autor: Alberti, Giuseppe

Ort: Mainz

PURL: https://resolver.sub.uni-goettingen.de/purl?366382810_1942-43|log31

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

UNIVERSITAS COMENIANA ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XLII-XLIII-1983

ON POINTWISE COMPLETENESS OF NONAUTONOMOUS LINEAR DELAY DIFFERENTIAL EQUATIONS

KRISTÍNA SMÍTALOVÁ, Bratislava

Consider the equation

$$x'(t) = a(t)x(t) - \tau(t), \tag{1}$$

where a(t) and $\tau(t) > 0$ are continuous functions from the set R of reals to R, and let $t_0 \in R$ be given. The equation is said to be pointwise complete provided for each point $(t_1, x_1) \in R^2$ with $t_1 > t_0$ there is a continuous initial function $\varphi : (-\infty, t_0] \to R$ such that the solution $x(t, t_0, \varphi) = x_{\varphi}(t)$ of (1) generated by φ goes through the point (t_1, x_1) , i.e. if $x_{\varphi}(t_1) = x_1$ (cf. [1], [3], [4], [5], among others). The problem of pointwise completeness is very important e.g. in the control theory, and as is pointed out by D. Myškis (cf. [3], p. 29, or [4]), the problem is only partially solved.

It is easy to find functions a(t), $\tau(t)$ such that the equation (1) is pointwise complete. A wide class of such equations is formed by certain type of oscillatory equations (cf. [2]). The following example is, however, in a certain sense extremal.

Example 1. Let C be the Cantor set in the interval [0, 1] (in general, C may be any nonempty nowhere dense perfect subset of [0, 1] of the zero Lebesgue measure). Define a function $\tau(t)$ for $t \in [0, 2]$ such that $t - \tau(t) + 1$ is the Cantor singular function for $t \in [0, 1]$ (i.e. $c(t) = t - \tau(t) + 1$ is a nondecreasing continuous function $[0, 1] \rightarrow [0, 1]$ with c(0) = 0, c(1) = 1, which is constant on each interval contiguous to C in [0, 1]), and let $t - \tau(t) = 0$ for $t \in [1, 2]$. Clearly $\tau(t) > 0$ and $t - \tau(t)$ is continuous and non-decreasing for $t \in [0, 2]$. Let a(t) be a continuous function $[0, 2] \rightarrow R$ with the following properties:

- (i) a(t) = 0 for $t \in C$;
- (ii) a(t) < 0 for $t \in (1, 2)$ with $\int_{1}^{2} a(s) ds = -1$;
- (iii) if $I \subset [0, 1]$ is an open interval contiguous to C let |a(t)| < mes (I) for $t \in I$, where mes (I) is the Lebesgue measure of I, let $\int_I a(s) \, \mathrm{d}s = 0$, and let a(s) have exactly 1 zero point in I.

Clearly a(t) = 0 only for t in a set of the zero Lebesgue measure, hence the zero set of a(t) does not contain any interval.

Now consider the equation

$$x'(t) = a(t)x(t - \tau(t))$$
 for $t \in [0, 2]$,
 $x(t) = \varphi(t)$ for $t \in [-1, 0]$,

where φ is an arbitrary initial function. We show that the solution x_{φ} satisfies the condition $x_{\varphi}(2) = 0$, i.e. that the equation is not pointwise complete. Indeed,

$$S = \int_0^1 a(s) \varphi(s - \tau(s)) \, \mathrm{d}s = 0$$

since

$$S = \sum_{n=1}^{\infty} \int_{I(n)} a(s) \varphi(s - \tau(s)) \, \mathrm{d}s + \int_{C} a(s) \varphi(s - \tau(s)) \, \mathrm{d}s$$

where $\{I(n)\}_{n=1}^{\infty}$ is an arbitrary enumeration of the intervals contiguous to C in [0, 1]. But $\int_{I(n)} a(s)\varphi(s-\tau(s)) ds = \text{const.} \int_{I(n)} a(s) ds = 0$, for each n, and the last term of S is 0 since mes (C) = 0. Therefore $x(1) = x(0) + \int_0^1 a(s)\varphi(s-\tau(s)) ds = x(0)$, and $x(2) = x(0) + x(0) \cdot \int_1^2 a(s) ds = 0$, q.e.d.

The following theorem gives some sufficient conditions for the pointwise completeness of the equation (1).

Theorem. Let a(t) be a continuous function for $t \in [t_0, \infty)$, and let $\tau(t)$ be a positive continuous function for $t \in R$. Let A be a set of zeros of a(t) in $[t_0, \infty)$. Assume that at least one of the following conditions is satisfied:

- (2) The set A is nowhere dense and the function $\delta(t) = t \tau(t)$ is strictly increasing, or
- (3) the set A has the zero Lebesgue measure, $\delta(t)$ is non-decreasing and absolutely continuous, and for each $\varepsilon > 0$, $(t_0, t_0 + \varepsilon)$ is an interval, or
- (4) A is a countable set and $\delta(t)$ is non-decreasing and for each $\varepsilon > 0$, $\delta(t_0, t_0 + \varepsilon)$ is an interval.

Then for each $t_1 > t_0$, and each $x_1 \in R$ there is a continuous initial function $\varphi: (-\infty, t_0] \to R$ such that the solution $x_{\varphi}(t)$ of (1) has the property $x_{\varphi}(t_1) = x_1$.

Before we proceed with the proof we introduce some terminology and notation. For non-negative integer k, let δ^k denote the k-th iterate of the function δ ; in particular, δ^0 is the identity function. Note that from the assumptions on $\delta(t)$, it follows that for each $t \in R$ there exists a non-negative integer k such that $\delta^k(t) \leq t_0$. The first such integer k is called the order of the point t.

By interval is always understood a non-degenerate interval. We say that an interval I is a regular interval of the 0-th order provided $I \subset (-\infty, t_0)$, and we say that I is a regular interval of the k-th order, where k is a positive integer, if I has the following three properties:

- (5) $\delta^k(I)$ is an interval;
- (6) $\delta^k(I) \subset (-\infty, t_0)$;
- (7) $\delta^{k-1}(I) \subset [t_0, \infty)$.

Now we prove the following two lemmas.

Lemma 1. Let the assumptions of the theorem be satisfied, and let I be a regular interval. Then the complement $I \setminus A$ of A in I contains at least two disjoint regular subintervals.

Proof. Since A is closed we have $I = (I \cap A) \cup \bigcup_{n=1}^{\infty} I_n$, where $\{I_n\}_{n=1}^{\infty}$ are relatively open subintervals of I (not necessarily different) which are disjoint with A. Remark that an interval I_n is relatively open in I provided I_n is the intersection of an open interval with I. We have $\bigcup_{n=1}^{\infty} I_n = I \setminus A$ and

$$\delta^k(I) = \delta^k(I \cap A) \cup \bigcup_{n=1}^{\infty} \delta^k(I_n)$$

where k is the order of I. It is easy to see that $\delta^k(I \setminus A)$ cannot be an interval. Indeed, if the condition (2) from Theorem is satisfied then $\delta^k(I \cap A)$ is a nowhere dense set; if (3) or (4) is satisfied, then $\delta^k(I \cap A)$ has the zero Lebesgue measure, or is countable, respectively. Since δ^k has the intermediate value property, there is some n such that $\delta^k(I_n)$ is an interval. Denote $I_n = (c, d)$. Then there is some $\lambda \in I_n$ such that both $\delta^k(c, \lambda)$ and $\delta^k(\lambda, d)$ are intervals. Now $I^1 = (c, \lambda)$, $I^2 = (\lambda, d)$ are the required intervals.

Lemma 2. Let the assumptions of the theorem be satisfied, and let J be a regular interval. Assume that there is some $s \ge t_0$ such that $J \subset (\delta(s), s)$, and let J and s have the same order. Then there is an initial function φ such that for the corresponding solution x_{φ} of (1) we have $x_{\varphi}(t) = 0$ for $t \in [\delta(s), s] \setminus J$, $x_{\varphi}(t) \ge 0$ for $t \in J$, and for some $t \in J$, $x_{\varphi}(t) > 0$.

Proof. The lemma is clearly true if J is an interval of the 0-th order. In this case we have $s = t_0$, and $x_{\varphi}(t) = \varphi(t)$ for $t \le t_0$; it suffices to choose a suitable φ .

Now assume by the induction that the lemma is true for every regular interval of the k-th order. Let J be an interval of the (k+1)-th order. By Lemma 1, the set $J \setminus A$ contains a regular interval I, and this interval I contains two disjoint regular subintervals I_1 , I_2 . Clearly, a(t) does not change the sign for $t \in I_1 \cup I_2$; we may assume without loss of generality that a(t) > 0 for such t. Denote $\delta(I_1) = I_1^*$, $\delta(I_2) = I_2^*$, and $\delta(s) = s^*$. Then I_1^* , I_2^* are regular intervals of the k-th order. By the

hypothesis, there are such initial functions φ_1, φ_2 , that $x_{\varphi_i}(t) = 0$ for $t \in [\delta(s^*), s^*] \setminus I_i^*, x_{\varphi_i}(t) \ge 0$ and $x_{\varphi_i}(t) \ne 0$ for $t \in I_i^*, i = 1, 2$. Assume that $r_1 < r_2$ for every $r_1 \in I_1$ and $r_2 \in I_2$. Denote

$$b = \int_{\delta(s)}^{s} a(\xi) x_{\varphi_1}(\delta(\xi)) d\xi / \int_{\delta(s)}^{s} a(\xi) x_{\varphi_2}(\delta(\xi)) d\xi,$$

and let $\varphi(t) = \varphi_1(t) - b \cdot \varphi_2(t)$. Then for $t \in [\delta(s), s]$ we have

$$x_{\varphi}(t) = \int_{\delta(s)}^{t} a(\xi)x_{\varphi}(\delta(\xi)) d\xi = \int_{\delta(s)}^{t} a(\xi)x_{\varphi_{1}}(\delta(\xi)) d\xi - b \cdot \int_{\delta(s)}^{t} a(\xi)x_{\varphi_{2}}(\delta(\xi)) d\xi.$$

Hence $x_{\varphi}(t) = 0$ if t lies between $\delta(s)$ and I_1 , $x_{\varphi}(t)$ is non-decreasing for $t \in I_1$, $x_{\varphi}(t) = \text{const} > 0$ for t lying between I_1 and I_2 , $x_{\varphi}(t)$ is non-increasing for $t \in I_2$, and finally, $x_{\varphi}(t) = 0$ for t lying between I_2 and s. Thus the lemma is proved.

Proof of the theorem. Denote $K = [\delta(t_1), t_1]$ and let k be the order of t_1 . First we show that K contains a regular interval I of the k-th order. Put

$$u = \max\{t \in K; \delta^{k-1}(t) \leq t_0\}.$$
 (8)

Such u exists since $\delta^{k-1}(t_1) > t_0 \ge \delta^k(t_1) = \delta^{k-1}(\delta(t_1))$. Now put $I = (u, t_1)$. Then for each $t \in I$ we have $\delta^{k-1}(t) > t_0$ (see (8)) and $\delta^k(t) \le \delta^k(t_1) \le t_0$ (since t_1 has order k). Moreover, $\delta^k(I) = \delta(\delta^{k-1}(I)) = \delta((t_0, \delta^{k-1}(t_1)))$ is an interval, by assumptions of the theorem. Hence $I \subset K$ is an regular interval of order k.

Let $J \subset I \setminus A$ be a regular interval (see Lemma 1). Denote $J^* = \delta(J)$, $t^* = \delta(t_1)$. Then $J^* \subset (\delta(t^*), t^*)$ is a regular interval, and by Lemma 2 there is an initial function φ such that $x_{\varphi}(t) = 0$ for $t \in [\delta(t^*), t^*] \setminus J^*$, $x_{\varphi}(t) \ge 0$, and $x_{\varphi}(t) \ne 0$ for $t \in J^*$. But in this case,

$$x(t_1) = \int_{t_1^*}^{t_1} a(\xi) x_{\varphi}(\delta(\xi)) d\xi = (\sup_{t \in J} a(t)) \cdot \int_{J} |a(\xi)| x_{\varphi}(\delta(\xi)) d\xi \neq 0.$$

Now if we replace $\varphi(t)$ by a suitable multiple const. $\varphi(t)$ of $\varphi(t)$, we obtain $x_{\varphi}(t_1) = x_1$, and the theorem is proved.

Note that in Example 1 the set $A = \{t; a(t) = 0\}$ is nowhere dense with mes (A) = 0, and that $t - \tau(t)$ is nondecreasing, continuous, but not absolutely continuous. This shows that the conditions (2) and (3) in our theorem cannot be essentially weakened. The following example shows that also the assumption that $t - \tau(t)$ is nondecreasing, cannot be omitted in (4).

Example 2. Let a(t) = 1 - 2t for $t \in [0, 1]$, $\tau(t) = 1 - t$ for $t \in [0, 1/2]$, $\tau(t) = 3t - 1$ for $t \in [1/2, 1]$. Then $\delta(t) = t - \tau(t)$ is a continuous function from [0, 1] onto [-1, 0]. Let $\varphi(t)$ be an arbitrary initial function for $t \in [-1, 0]$. We have

$$x_{\varphi}(1) = \int_0^1 a(\xi) \varphi(\delta(\xi)) d\xi =$$

$$= \int_0^{1/2} (1 - 2t) \varphi(2t - 1) dt + \int_{1/2}^1 (1 - 2t) \varphi(1 - 2t) dt =$$

$$= \frac{1}{2} \int_{-1}^0 -v \varphi(v) dv + \frac{1}{2} \int_{-1}^0 u \varphi(u) du = 0.$$

Hence the equation (1) in this case is not pointwise complete although a(t) has exactly one zero point.

REFERENCES

- [1] Driver, R. D.: Ordinary and delay differential equations. Springer, Berlin 1971.
- [2] Myškis, A. D.: Linejnyje differencialnye uravnenija s zapazdyvajuščim argumentom. Nauka, Moskva 1972.
- [3] Myškis, A. D.: O nekotorych problemach teorii differencialnych uravnenij s otklonjajuščimsja argumentom. Uspechi matematičeskich nauk 32 (1977), No 2 (194), 173—202.
- [4] Ladas, G.: Sharp conditions for oscillations caused by delays, Applicable Analysis 9 (1979), 93—98.
- [5] Yorke, J. A.: Selected topics in differential delay equations. Proc. of Japan United States seminar on ordinary differential and functional equations. Springer, Berlin 1971, p. 16—28.

Author's address:

Kristína Smítalová Katedra matematickej analýzy MFF UK Mlynská dolina 842 15 Bratislava

SÚHRN

O BODOVEJ ÚPLNOSTI NEAUTONÓMNYCH LINEÁRNYCH DIFERENCIÁLNYCH ROVNÍC S ONESKORENÍM

Kristína Smítalová, Bratislava

Pre rovnicu (1) so spojitým koeficientom a spojitým kladným oneskorením sú v práci dokázané podmienky bodovej úplnosti. Na príkladoch je ukázané, že tieto podmienky nemožno zlepšiť.

Received: 28.3.1980

РЕЗЮМЕ

О ТОЧЕЧНОЙ ПОЛНОТЕ НЕАВТОНОМНЫХ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЗАПАЗДЫВАНИЕМ

Кристина Смиталова, Братислава

Для уравнения (1) с непрерывным коэффициентом и непрерывным положительным запаздыванием доказываются условия точечной полноты. На примерах показывается, что эти условия невозможно улучшить.