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ON POINTWISE COMPLETENESS OF NONAUTONOMOUS
LINEAR DELAY DIFFERENTIAL EQUATIONS

KRISTINA SMITALOVA, Bratislava

Consider the equation

x'()=a(0)x(1) - (1)), (1)

where a(t) and 7(t) >0 are continuous functions from the set R of reals to R, and
let t, € R be given. The equation is said to be pointwise complete provided for each
point (t;, x,) € R? with t, > t, there is a continuous initial function @: (— «, t;] >R
such that the solution x(t, to, @)= x,(t) of (1) generated by @ goes through the
point (¢, x,), i.e. if x,(t;) = x; (cf. [1], [3], [4], [5], among others). The problem of
pointwise completeness is very important e.g. in the control theory, and as is
pointed out by D. Myskis (cf. [3], p. 29, or [4]), the problem is only partially
solved.

It is easy to find functions a(t), t(¢t) such that the equation (1) is pointwise
complete. A wide class of such equations is formed by certain type of oscillatory
equations (cf. [2]). The following example is, however, in a certain sense extremal.

Example 1. Let C be the Cantor set in the interval [0, 1] (in general, C may
be any nonempty nowhere dense perfect subset of [0, 1] of the zero Lebesgue
measure). Define a function z(t) for t € [0, 2] such that ¢t — t(t)+ 1 is the Cantor
singular function for t € [0, 1] (i.e. c(t) =t — t(¢t) + 1 is a nondecreasing continuous
function [0, 1]— [0, 1] with ¢(0)=0, c¢(1)=1, which is constant on each interval
contiguous to C in [0, 1]), and let ¢t —7(t)=0 for t€[1, 2]. Clearly 7(t)>0 and
t — 7(t) is continuous and non-decreasing for ¢t €[0, 2]. Let a(t) be a continuous
function [0, 2]— R with the following properties:

(i) a(t)=0 for teC;

2
(i) a(f)<0 for te(l, 2) with f a(s) ds=—1;
1
(iii) if I<[0, 1] is an open interval contiguous to C let |a(t)] <mes (I) for
t € I, where mes (I) is the Lebesgue measure of I, let J’ a(s) ds =0, and let a(s)
I

have exactly 1 zero point in I.
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Clearly a(t) =0 only for ¢ in a set of the zero Lebesgue measure, hence the
zero set of a(t) does not contain any interval.
Now consider the equation

x'(=a(t)x(t—1(t)) for tel0,?2],
x()=0o(t) for te[-1,0],

where @ is an arbitrary initial function. We show that the solution x, satisfies the
condition x,(2)=0, i.e. that the equation is not pointwise complete. Indeed,

S= f a(s)@(s — 1(s)) ds =0

since

=3

I(n

) a(s)ep(s—t(s)) ds + L a(s)e(s —t(s)) ds

where {I(n)}.-, is an arbitrary enumeration of the intervals contiguous to C in

[0, 1]. But j

I(n

a(s)e(s — t(s)) ds = const. f a(s) ds =0, for each n, and the
) I(n)
1
last term of S is 0 since mes (C) =0. Therefore x(1) = x(0) +f a(s)p(s—1(s)) ds
0

= x(0), and x(2)=x(0)+ x(0) - fza(s) ds =0, g.e.d.

The following theorem gives some sufficient conditions for the pointwise
completeness of the equation (1).

Theorem. Let a(t) be a continuous function for ¢ €[t,, @), and let 7(t) be
a positive continuous function for t € R. Let A be a set of zeros of a(t) in [t,, ®).
Assume that at least one of the following conditions is satisfied:

(2) The set A is nowhere dense and the function &(t)=t—t(t) is strictly
increasing, or

(3) the set A has the zero Lebesgue measure, 6(¢) is non-decreasing and
absolutely continuous, and for each £>>0, (t, t + €) is an interval, or

(4) A is a countable set and &(t) is non-decreasing and for each £>0,
6(to, to+ €) is an interval.

Then for each t,>1,, and each x, € R there is a continuous initial function
@: (— =, t)]—> R such that the solution x,(¢) of (1) has the property x,(t:;)= x:.

Before we proceed with the proof we introduce some terminology and
notation. For non-negative integer k, let 6 denote the k-th iterate of the
function & ; in particular, 8° is the identity function. Note that from the assump-
tions on 8(t), it follows that for each t € R there exists a non-negative integer k
such that 6“(t)<t,. The first such integer k is called the order of the point ¢.
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By interval is always understood a non-degenerate interval. We say that an
interval I is a regular interval of the 0-th order provided I = (— =, t,), and we say
that I is a regular interval of the k-th order, where k is a positive integer, if I has
the following three properties:

(5) 6*(I) is an interval;
(6) 6“(Dc(—, t);
(7) 8" '(I) =[to, ).

Now we prove the following two lemmas.

Lemma 1. Let the assumptions of the theorem be satisfied, and let I be
a regular interval. Then the complement I\ A of A in I contains at least two
disjoint regular subintervals.

Proof. Since A is closed we have I =(InA)uO L., where {I,}7-. are
n=1

relatively open subintervals of I (not necessarily different) which are disjoint
with A. Remark that an interval I, is relatively open in I provided I, is the

intersection of an open interval with I. We have 0 L. =1\ A and

8(I)= 6*(InA)u CJ 8*(I)

where k is the order of I. It is easy to see that §“(I\ A) cannot be an interval.
Indeed, if the condition (2) from Theorem is satisfied then 6*(InA) is a nowhere
dense set; if (3) or (4) is satisfied, then 6*(In A) has the zero Lebesgue measure,
or is countable, respectively. Since 8" has the intermediate value property, there is
some n such that §*(I,) is an interval. Denote I, =(c, d). Then there is some A € I,
such that both 6*(c, A) and 6*(A, d) are intervals. Now I' =(c, 1), I’= (A4, d) are
the required intervals.

Lemma 2. Let the assumptions of the theorem be satisfied, and let J be
a regular interval. Assume that there is some s = t, such that J =(8(s), s), and let J
and s have the same order. Then there is an initial function @ such that for the
corresponding solution x,, of (1) we have x,(t) =0 for t €[5(s), s]\J, x,()=0 for
telJ, and for some reJ, x,(r)>0.

Proof. The lemma is clearly true if J is an interval of the 0-th order. In this
case we have s = t,, and x,(t) = @(t) for t <1, ; it suffices to choose a suitable @.

Now assume by the induction that the lemma is true for every regular interval
of the k-th order. Let J be an interval of the (k + 1)-th order. By Lemma 1, the set
J\ A contains a regular interval I, and this interval I contains two disjoint regular
subintervals I,, I,. Clearly, a(t) does not change the sign for t€ I,ul,; we may
assume without loss of generality that a(t)>0 for such t. Denote 6(I,)=1I%,
8(I,)=1I%, and 8(s) =s*. Then I%, I are regular intervals of the k-th order. By the
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hypothesis, there are such initial functions @1, @2, that x,(t)=0 for
te[6(s*), s*]\I*, x,,(t)=0and x,,(t)#0 for te I'*, i =1, 2. Assume that ri<r, for
every riel, and r, e I,. Denote

b= a@x. @) ae/| | a(®)x(6(8)) dE,

and let @(t)=@.(t)— b.@,(t). Then for t €[8(s), s] we have

2(0=[ a@x 6@ =] a@x6@) b a@r6)ds.

Hence x,(1)=0 if t lies between 8(s) and I,, x,(¢) is non-decreasing for tel,,
xq(t) =const >0 for ¢ lying between I, and I, x,(¢) is non-increasing for ¢t € I,, and
finally, x,(t) =0 for ¢ lying between I, and s. Thus the lemma is proved.

Proof of the theorem. Denote K =[§(t,), t,] and let k be the order of ¢,. First
we show that K contains a regular interval I of the k-th order. Put

u=max {teK; 6" '(1)<t,}. (8)

Such u exists since 6*~'(t:)>1,=6"(1,) = 8*7'(8(t,)). Now put I =(u, t,). Then
for each tel we have 6"7'(t)>1, (see (8)) and 6*(¢)<d*(t,)<t, (since t, has
order k). Moreover, 8"(I) = 8(8*'(I)) = &((to, 8“7'(t))) is an interval, by
assumptions of the theorem. Hence I =K is an regular interval of order k.

Let JcI\A be a regular interval (see Lemma 1). Denote J*=§(J), tt=
8(t,). Then J* = (8(t%), t1) is a regular interval, and by Lemma 2 there is an initial
function @ such that x,(¢)=0 for te[8(t%), t¥]\J*, x,(t)=0, and x,(¢)%0 for
teJ*. But in this case,

2(1)= | a(©)x(3(8)) d& = sign a(0)- | a(®)lx,(5(8)) dt#0.

Now if we replace @() by a suitable multiple const. (1) of @(t), we obtain
xo(t:)=x:, and the theorem is proved.

Note that in Example 1 the set A ={¢; a(t)=0} is nowhere dense with
mes (A)=0, and that t—1(¢) is nondecreasing, continuous, but not absolutely
continuous. This shows that the conditions (2) and (3) in our theorem cannot be
essentially weakened. The following example shows that also the assumption that
t —1(t) is nondecreasing, cannot be omitted in (4).

Example 2. Let a(t)=1-2t for t€[0, 1], t(t)=1~—1¢ for te[0, 1/2], ©(t) =
3t—1for te[1/2, 1]. Then 8(t) =1t — 7(¢) is a continuous function from [0, 1] onto
[-1, 0]. Let @(¢) be an arbitrary initial function for te[—1, 0]. We have

%)= [ a®0(6(2) dt =
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=j”2(1 —20)@(2t—1) dt+fl (1 =20 (1 —2f) dt =

0 0
=%f —ve(v) dv +%f up(u)du=0.
—i -1

Hence the equation (1) in this case is not pointwise complete although a(t) has
exactly one zero point.
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SUHRN

O BODOVEJ UPLNOSTI NEAUTONOMNYCH LINEARNYCH
DIFERENCIALNYCH ROVNIC S ONESKORENIM

Kristina Smitalova, Bratislava

Pre rovnicu (1) so spojitym koeficientom a spojitym kladnym oneskorenim sii v praci dokdzané
podmienky bodovej tplnosti. Na prikladoch je ukazané, Ze tieto podmienky nemozno zlepit.
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PE3IOME

O TOYEYHOM ITOJIHOTE HEABTOHOMHBIX JIMHENMHBIX
OIU®PEPEHLIMANIBHBIX YPABHEHHUN C 3ATNA30LIBAHUEM

Kpucruna Cmutanosa, Bpatucnasa

Hns ypaBHenus (1) ¢ HenpepbIBHBIM KOI(HULUHEHTOM H HENPEPBIBHBIM MOMOXUTENbHBIM 3aMa3-
ABIBAHHEM IOKa3bIBAIOTCA YCIOBHSA TOYEYHOM MOMHOTHL. Ha npuMepax nokasbIBaeTcs, 4To 3TH YCII0BHS

HEBO3MOXHO YJNYYUIHTD. i
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