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ON THE STABILITY OF A MODEL FOR THE
BELOUSOV—ZHABOTINSKIJ REACTION

KAROL BACHRATY, Bratislava

In this paper, a 3-dimensional system of differential equations, which is the
Weisbuch—Salomon—A tlan model for the Belousov—Zhabotinskij reac-
tion, is considered. In [1] V. Seda has shown the unstable properties of solutions
of this model and has provided a sufficient condition for a positive equilibrium
point to be stable.

The purpose of this paper is to provide other sufficient stability conditions. It is
accomplished by using the theory from papers [1], [2]. Further, a sufficient
condition for a positive equilibrium point of this system to be stable with respect to
a certain subset of the Euclidean space, is gained, by using La-Salle’s extended
stability theorem [2].

1. The model in question is

X= —5K|X+ Ksc,
U=K.X+K,;U- K, XU-K,U?, (D
C=2K,U-4K.C,

where K,— K; are positive real parameters representing kinetic constants and
X, U, C are concrentrations, and hence, nonnegative.
The system (1) has two equilibrium points

a0=(0,0,0), a,=(Xo, Uy, Cy), (2
where
o= 11K2
7 10(K.K; + 10K, K,)
_ 11KK,
Uo= K.K;+ 10K K, 3)
C 11K, K2

T 2K(K.K, + 10K, Ky)
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and thus

K, K K,

X“=WI(| U()'—'S—I(I Cn, CO:QK

Us. 4)
By Theorem 2 [1], the equilibrium point a, of (1) is unstable.
Now the stability of a critical point a, will be investigated. To this aim let us
introduce new variables x, u, c, by

X=Xo+x ,
U=U,+u ’ (5)
C = Cn+ [
Then (1) will assume the form
i = _5K|x + K5C,
u=(K - K;Uy)x + (K: = K:Xo— 2K, Uo)u — Koxu — Kau’, (6)
¢ =2K3u —4K5C F
Obviously, a, is transformed into the equilibrium point (0, 0, 0) of the system (6).
Denote
a, 0, b
-—B=(g, d, O) 7
0, e, f
5K, 0, -K;
_B= 10K,(K:;K:— K, K,) Ki(K,;K;+ 120K,K.) 0
- K;K:+10K,K: ’ 10(K:K;+10K,K,)’
0, -2K;, 4K;
and

0
flx, u)= (—szu - K.,uz).
0

Then the system (6) can be expressed as

d/* x
a;(u)=B(u)+f(x, u). (8)
c c

Definition 1. [2]. Let A be an n X n real matrix. Then A is said to be an
M-matrix if and only if the off-diagonal elements are all nonpositive and the
principial minors are all positive.
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Remark 1. If A is an M-matrix, then there is a positive definite diagonal
matrix W such that WA + A'W is positive definite [2].

Remark 2. If the off-diagonal elements of A are all nonpositive, then the
condition ““A is an M-matrix”’, by a property of the M-matrix, is equivalent to the
condition, ‘“‘the leading principial minors of A are all positive”, that is,

an ... Qi
det [? " % >0 fori=1,2,..,n[2).
ai ... Qi
Denote
n=K,K:/K.K,. 9)

Lemma 1. Let —B be a matrix defined by (7). Let 0<n<1. Then —B is an
M-matrix.

Proof. The condition 0 <n <1 means that K,K; < K, K,. Then the offdiagonal
elements of —B are all nonpositive. The leading principial minors of —B are

i. 5SK,>0,
ii. 5K,K5(K,K;+ 120K,K,)/10(K,K;+ 10K,K,)>0,
iii. det (_B)=22K|K3K5>0.

By Remark 2, —B is an M-matrix.
Q.E.D.
Lemma 2. Let —B be a matrix defined by (7). Let 1 <n <485. Then there is
a positive definite diagonal matrix W such that W(—B)+ (—B)'W is positive
definite.
Proof. The condition 1 <n <485 means that

K:K.<K;K;<485K;Kj,. (10)
Then
a>0,d>0,f>0,g>0 and b<0, e<0 inthe matrix —B. (11)
Define
b<g'= 63?22;2; = 162(5;g§é,K; Iz'f)}f});y - 1§?r(.n+—1 2)2)2 y Lemedss,
(12)
Further

d , 3025(n—1)

an 9 “Bn+120y 0 If n>1.
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Therefore, q* is an increasing function of n. Then
0<q|n-ns=1. (13)
By properties (11) and (13)
0<ebg/8adf =qi<1. (14)

Define a matrix

w 0 0

0 0 W,
_1 g _1e _
w.—q2 16ad2f>0’ Wz—q 4df>0’ wi=1, (15)
and a matrix G=(g;) i,j=1,2,3
(1g¢  1cg 1 bge)
q’8d°f °  q4df ° q’l6ad’f
_ — 1 e’g 1e’
G=W(-B)+(—-B)W= q3d " a7 e .1(16)
1 bg’e’
q’ 16ad*f ¢ ’ 2f ]
The leading principial minors of G are
: _1 g%
1. g“—qz 8d2f>0,
. |9 ge|_1 g’ (1 )
: =——=—|(——1]>0,
. lgzl gz:‘ q 16d°f" \q

iii. det (G)=8(q*—1)’(2q*+ 1)a’*fe*/b*>0.

The matrix G is a symmetric matrix and leading principial minors of G are all
positive, then G is a positiye definite matrix [4]. The matrix W defined by (15) is
a positive definite diagonal matrix.

5 Q.E.D.

Theorem 1. If K,K,<485K,K, then the equilibrium point a, of the system
(1) is exponentially asymptotically stable.

Proof. If K;K;<485K,K, then 0 <n <485. Then there is a positive definite
diagonal matrix W such that W(—B)+ (—B)'W is positive definite, by Lemma 1
and by Remark 1if 0<n <1, and by Lemma 2 if 1 <n <485. Then by Theorem 2
[2] the real parts of the eigenvalues of —B are all positive. Therefore, the real parts
of the eigenvalues of B are all negative. Then the quilibrium point (0, 0, 0) of the
system (6) is exponentially asymptotically stable [3]. Therefore, the equilibrium
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point a, of the system (1) is exponentially asymptotically stable.
Q.E.D.

2. Let P be a subset of R* and a, € P. Let every solution of (1) remain in P for
all t=1,, if the initial value belongs to P.

Defimition 2 [2]. A positive equilibrium point a, of the system (1) is said to be
asymptotically stable in the large with respect to the set P, if and only if

i. the equilibrium point a is stable with respect to P, namely, if for every € >0
there exists 8(e; to) such that if ||(X(t), U(t), C(t))— a:|| <6 and the solution
(X(1), U(t), C(1)) is in P, then ||(X(1), U(1), C(t))— a\||<e for t=t,,

ii. and every solution converges to a, as t— =, if (X(t), U(t), C(t,))€ P.

Further, we shall assume that 1 <n <485.

Now define a continuously differentiable function V(x, u, c)

Cc

x
V(x, u, c)=(x, u, c)W(u), (17)

where W is a matrix defined by (15), then
V(x, u, ¢)=0in R”and V(x, u, c) =0 holds only for (0, 0, 0). (18)

The time derivative of V(x(t), u(t), c(t)), along the solution of (6) is

(% V(x(t), u(t), c()|w=

x
=(x, u, c)(WB + B'W) (u)+2(x, u, c)Wf(x, u)= (19)
c
x
=—(x, u, c)G(u) = 2wou’(Kax + Kau),
c
where G is a matrix defined by (16). By Lemma 2 G is positive definite.
Define
x
F(x, u, c)=(x, u, c)G(u)+2wzu2(K2x+K4u). (20)
c

The term 2w,u’(K;x + K,u) is not dependent on ¢. Thus F(x, u, c) is a quadratic

function of c. Since g;;>0, then there is mi‘I;l F(x, u, c). Further, 58— F(x, u, c)
ce C

=  2¢gnc+2g5u+2gisx=0 holds only for c=é=—"2"92  Gince

2

3
3¢ F(x, u, c)=2g3;;>0, then
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ﬂifa' F(x, u, c)=F(x, u, ¢)|c=c =

=dx*+ dpu? + 2daxu + 2wou*(Kox + Kau), (21)
where
2 2
d||=gu—’g‘j“;, d22=gzz"%, d|z=g|2—%- (22)
Define a subset M(n) of R>,
K,
M(n)={(x, " c):x>—fu—n}. (23)
2
Then
2wou’(Kox + Kau) = —2w,Konu? in M(n). (24)
Therefore
F(x, u, c)?rcneig F(x, u, c)=(x, u)D(E) in M(n), (25)
where D is a matrix
- dll, dlZ )
2 (dnz, dzz"'2W2Kzn ’ ' (26)

The matrix G =(g;) defined by (16) is positive definite, then d, > 0. Therefore, D
" is positive definite, if and only if det (D)>0, this means

2w1K (d” d:) @7

that is,

Ks(n+120)Q(n)
10K;(n +10) °

(28)

where n is defined by (9) and

25(n — 1)
. 2\/16(n+120)2

i+ 1 “5(n—-1)
4(n+ 120)

Q(n)=1- 3 1<n<48S. (29)

+1

Since F(0, 0, 0)=0, by (25) we obtain
Lemma 3. If (28) holds, then F(x, u, c) is positive definite in M(n).
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Denote

k=K,/K,, L=K,/K,, (30)
then
k<L<485k and K K,<K,K;<485KK,. (31)
Therefore
k=K,/K,<U,= 11K ,K:/(K,K: + 10K,K,) < K+/K: = L (32)
Define a set
H(h)={(X,U,C): X,<X<X;,ksU<h,C,<C<GC,}, (33)

where
L<h,0<C <(K;/2K5)k, (K:/2K5)h < C;,
0< X, <(Ks/5K,)Cy, (Ks/5K,\)C, < X;.
Then ;)y Lemma 3 [1] a, € H(h) and every solution of (1) remain in H(h) for all

t=t,, if the initial value belongs to H(h).
Lemma 4. Let P(h) be a set

P(h)={(X, U C): X k<x< X p k<ush ﬁksCsi(ih}

10K, 10K, 2K 2K;
for h> L. Then a, € P(h) and every solution of (1) remains in P(h) for all ¢t = t,, if
the initial value belongs to P(h).

Proof. By (32) k<U,<L<h, then (K,/10K,)k <X,<(K;/10K,)h and
(K3/2Ks)k < Co<(K3/2Ks)h for k> L. Therefore a, € P(h).

Let (X(¢), U(t), C(t)), be a solution of (1). Let the initial value for t=t,
belong to P(h) and t,>1t, such that this solution does not belong to P(h) at ¢,.
Assume, that X(t,)<(K;/10K,)k. Then there are numbers X;, C, such that
X(t:)< X, <(K5/10K))k and X, <(Ks/5K,)C, <(K:/10K,)k, C,<(K;/2K;)k.

Therefore (X(t,), U(t,), C(t.)) é H(h).

This can be proved similarly from the assumption X(t,)>(K:/10K,)h, or
U(t) é[k, h] or C(t,)¢[(Ks/2Ks)k, (K3/2Ks)h]. Then by Lemma 3 [1] this
solution remains in P(h) for all t=t,, since P(h)<= H(h).

Q.E.D.

By the transformation (5) P(h) is

Pl(h) = {(x, u, C): (K3/10K1)(k — Uo)sx s(K;;/lOK[)(h = Uo),
(k= Up)<u<(h-U), (Ks/2Ks)(k — Up) <c <(Ks/2K5)(h— Up)}. (34)
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If
(K3/10K,)(k — Up)> — (Ko/K)(k—Uy) — 1, (35)

then x > —(K4/K;)u — n in P,(h), that is P,(h) is a subset of M(n). The condition
(35) is equivalent to the condition

n>(K,KJ/K3)(n—1). (36)
Lemma S. F(x, u, c) defined by (20) is positive definite in P,(h), if

10(n+10)(n—1
n(n+120)

<Q(n), 1<n<48s5, (37
where Q(n) is defined by (29).
Proof. The condition (37) is equivalent to

K|K4("l = 1)< Kg(n + 120)0(”)
K3 10Kz(n + 10)

Then there is an >0 such that

K1K4(n - 1) K}(n + IZO)Q(H)
K2 "< 10Ky (n +10)

Therefore (36) and (28) hold then by Lemma 3 F(x, u, c) is positive definite in
M(n) and P,(h) = M(n).
Q.E.D.
Theorem 2. If n satisfies the condition (37), then the equilibrium point a, of
the system (1) is asymptotically stable in the large with respect to the set

P={(X, U, C): (K+/10K)k<X, k< U, (K:/2K;)k<C}, (38)

in the sense of Definition 2.

Proof. The folloving conditions hold in P,(h), which is defined by (34):

1. every solution of (6) remains in P,(h) for all ¢t=t,, if the initial value
belongs to P,(h) by Lemma 4 and transformation (5),

2. Py(h) is a compact set and (0, 0, 0) e P,(h),

3. there is a continuously differentiable function V(x, u, c¢) defined by (17)
with properties

a) V(x, u, c¢) is positive definite in P,(h),

b) V(x(1), u(t), c(t))|@=—F(x, u, ¢) is negative definite in P,(h) by
Lemma 5.

Then the equilibrium point (0, 0, 0) of the system (6) is stable with respect to
the set P,(h) and all the solutions starting in P,(h) approach the origin (0, 0, 0) as
t— » by the extended stability theorem of LaSalle [2]. Therefore, equilibrium
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point a, of (1) is asymptotically stable in the large with respect to P(h) for all
h>L, then to the set P.

Q.E.D.
Remark 3. Denote N(n)=10(n+ 10)(n—1)/n(n+120), 1<n <485. Then

dN(n) _10(111n*+2n + 1200)
dn n*(n + 120)’

>0 for 1<n<485.

Therefore, N(n) is an increasing function of n for 1 <n <485, then
N(n)<N(4)<0.846 for 1<n<4. (39)
On the other hand

dQ(n) _ —3025(q*+2)(n—1)
dn ~ 244%(q*+1)*(n+120)

<0 for 1<n<485.

Therefore, Q(n) is a decreasing function of n for 1<n <485, then
Q(n)=Q(4)>0.851 for 1<n<4. (40)

That is by (39), (40) N(n) < Q(n) for 1 < n<4. Therefore the condition (37) holds
for 1<n<4 and we obtain

Corollary 2.1. If K, K, < K,K;<4K,K,, then the equilibrium point a, of (1) is
asymptotically stable in the large with respect to the set P defined by (38).
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PE3IOME
OB YCTOMYMBOCTHA MOJEJIM PEAKLIMM BEJIOYCOBA—XABOTUHCKOI'O
Kapon Baxpatsl, Bpatucnapa
B paGore paccMaTpuBaeTcs YCTOWYHBOCTL CHCTeMbl (1), KOTOpas mNpeNCTaBIseT MOJEb
Benc6yxa—CanoMoHa—ATnaHa peakuun Benoycopa—Xa6oTHHckoT0. JlokasbBaeTcs foc-
TATOYHOE YCIIOBHE IKCMNOHEHUMANBLHOH YCTOWYMBOCTH M JOCTATOYHOE YCJIIOBHE ACHMIITOTHYECKOMH
YCTaiYHBOCTH B HEKOTOPOM MHOXECTBE.
SUHRN
O STABILITE MODELU BELOUSOVEJ—ZABOTINSKEHO REAKCIE
Karol Bachraty, Bratislava
V prici sa pojedndva o stabilite rieSeni diferencidlneho systému (1), ktory predstavuje
Weisbuchov—Salomonov—Atlanov model Belusovej—Zabotinského reakcie. Dokazuje sa

postatujica podmienka exponencidlnej stability a postafujica podmienka asymptotickej stability
vzhladom na nijaki podmnoZinu R>.
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ON FUCIK’S BOUNDARY VALUE PROBLEM
x"(8) + x()=a(x(t))” + p(1), x(0) =x(x) =0

ZDENEK SCHNEIDER, Bratislava

1. Formulation of the problem
Consider the boundary value problem
x"(t)+ x(8) = a(x(t))” + p(1), x(0) = x(7) =0 (1.1)

where (x(t))” =max {—x(t), 0}, a is a positive constant and p(t) e C({0, 7)) is
such that

[ psin @ arso. (1.2)

In the paper [3] S. Fucik poses the questic;n as to whether (1.2) is a necessary
and sufficient condition in order that (1.1) have a solution for any a>0.

In the paper [1] L. Aquinaldo and K. Schmitt answered the question in the
affirmative manner. They used Mawhin’s coincidence theory [4].

The main difficulties in (1.1) are

a. the Green’s function for associated linear problem
x"()+x(t)=0, x(0)=x(7x)=0

does not exist,

b. the nonlinear part of the problem (1.1)

a(x(1))” +p(1)

is a nondifferentiable function.

In this paper we use for solving the problem (1.1) Cesari’s [2] alternative
method. The foundation of this method may be described in this way.

Let us consider in a real separable Hilbert space S an operator equation
Ex=Nx. Let E: #(E)cS—S be a linear operator, let N: #(N)cS—S be
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a nonlinear operator with D(N)ND(E) #@. Let S = S,® S, (direct sum). Let P, H
be operators with the following properties:

P is a projection, P: S— So, R(P)=S,, N(P)=S,, Pxe D(E) for x€8S,
H is a linear operator, H: S,— S,, H(I — P)Nx € D(E) for x € @(N)

and .
H(I-P)Ex=(I-P)x x € D(E)
PEx = EPx xe9D(E) (1.3)
EH(I—- P)Nx=(I—- P)Nx x€D(N).
Then the problem Ex = Nx is equivalent to the system of two equations
x=Px+ H(I- P)Nx (1.4)
P(Ex—Nx)=0 (1.5)

The equation (1.4) is said to be the auxiliary equation and (1.5) the bifurcation or
determining equation. If S, is a finite dimensional space then (1.5) is a finite system
of nonlinear equations in finite dimensional space.

The equation (1.4) in Cesari’s papers is usually solved by Banach’s fixed
point theorem and the system (1.5) is analyzed by considerations based on the
degree of a mapping [5].

The basic theorem for us is Theorem viii in [2] p. 398. Some hypotheses are
given under which the problem Ex = Nx has at least one solution.

We shall investigate under which conditions the hypotheses from Theorem viii
are fulfilled.

Our results are not as general as in [1]. However, together with sufficient
conditions for the existence of a solution y(t) of the problem (1.1) we are able to
give error bounds for y(t) — xo(t) and y(t) — xs(t) where x,(t) is given aproxima-
tion of the “solution” y(t) and x(t) is Galerkin’s approximation for y(t).

Clearly if I p(1) sin (¢t) dt =0 then using Fredholm’s theorems we are able
0

to argue that the solution u(t) of the problem x"(¢) + x(t) = p(t), x(0)=x(x)=0
exists. The solution of this problem is also the function uo(t)+ a.sin (t) for
arbitrary a €R. There exists a positive number A such that for a>A holds
uo(t) + a.sin(¢) = 0. This function is also a solution of the problem (1.1).

In what follows we will assume that J p(2) sin () dt <O.
0

2. Background

Let us denote S = L?(0, x). It is a real separable Hilbert space with norm || . ||
and scalar product (.,.) defined as usually: for f, g€ S let be
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()= [ 10a(® dr and lIfl = (s, '™

Let o(t)= \/ % sin (jt) j=1, 2, ..., Obviously the system

{@:i(D), ..., @(1), ...} is a complete orthonormal system in S. Let us define the
operator E as follows

D(E)={xeS|x(0)=x(m)=0, x(t) e C({0, 7)), x"(t) e S}
Ex)(®)=x"(t)+x(t).

Obviously E: 9(E)cS— S and it is a selfadjoint (symmetric) operator and it
holds

Eg;(t)=—-A@(t) with ,,=(*—1) forj=1,2, ....
Further let N be the operator with
D(N)=S
N@x) () =a(x(0)" +p(0).
Evidently N: 2(N)— S and it is easy to see that N is Lipschitzian with constant a
ie.
[|Nx; — Nx;|| = al[x) — x| for xi, x.€S.

Inasmuch as D(E)n%@(N)+# @ we can the problem (1.1) rewrite in the form
Ex = Nx.

Further let S,=span (@.(t)) and S, =span (@.(t), @s(t), ...). Then So= D(E)
and S=S,@S..

For x€ S let

8

) ‘ai(pi(t)

]

be associated Fourier series with g;=(x, ;).

Let us define the projection P as follows. If x(t)=2 a@,(t) then P(x)(t)=
j=1

a,@(t). It holds R(P)=S,, N(P)=S..
Let us define the operator H: S,— S, in the following way. If x€ S, i.e.

x()=Y, a (1) then

Hx)()= —;A;'a,-w,-(t)-
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Obviously H is a linear operator and Hx € S;.
Lemma 2.1. If x€ S, then Hx € 9(E).
Sketch of proof.
Let u(t)=H(x)(¢). It is easy to see (using Weierstrass’s theorem) that

u(t)e CV((0, w)) and u(0)=u(n)=0. The function v(t)= —Slf'a,-q)i(t) be-

longs to L*(0, &)< L(0, ). Finally, we can show that for 0=t=n

u'(t)= u’(O)+J v(s) ds, thus u"(t) exists a.e. and belongs to S.
0
Q.E.D.

Lemma 2.2. It holds

H(I-P)Ex=(I-P)x xe D(E)
PEx =EPx x € %(E)
EH(I-P)Nx=(I—-P)Nx xe%(N).

Proof.
By direct computation.

Following [2] the equation Ex=Nx is equivalent to the system of two
equations

x=Px+ H(I-P)Nx, P(Ex-—Nx)=0.

3. Auxiliary equation
Let us denote xo(t) = co@:(t) for an arbitrary, but fixed x, € R. For a bounded
function x(t)€ S let u(x)=sup |x(t)|. Let us denote A= H(I— P)(Ex,— Nx,).
(0, )

Then A=—-H(I-P)p(1) = Ezlf‘pm(t) with p;=(p(?), @(0)) j=1,2, ....
=
Obviously there exist numbers b, b’ such that
lAll=b, u(a)=b’ (3.1)

holds.
If x € S then it is possible to show that it holds

|H(I - P)x|| = k||x|| and p(H(I-P)x)sk'||x||
with k =1/3 and k' =0,29312571 3.2)
Using Theorem iv [2] p. 393 if there exist numbers c, d, r, Ro,‘a such that

1. 0<c<d, 0<r<R,
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ka<1
kad<d—-c-b (3.3)
k'ad<Ro—r—b’
5. the implication z€S,, ||z|]|=c=>u(z)=r holds then Px + H(I — P)Nx is
a contractive mapping on complete subspace
St={xeS|Px=Px*, ||x—x||=d, u(x — x0)=R,}
for arbitrary but fixed x*e V= {x € So|||x — xo|]| S ¢}.

Lemma 3. 1. If

bl

a<3 (34)
and for arbitrary ¢>0 it is
d>(c+b)/(1-ka) 3.9
2
r= \/; c (3.6)
Ro>k’'ad+r+b’ 3.7

then the conditions (3.3) are fulfilled.

So if the conditions (3.4)—(3.7) are satisfied, the equation x=
Px+ H(I—-P)Nx has exactly one solution x(x*)e S¥. This solution depends
continuously on x* € V. From Lemma 2.1 we see that x(x*) e D(E)n@(N) and so
x(x*) will be the solution of the problem Ex=Nx if and only if
P(E(x(x*)) = N(x(x*)))=0.

4. Determining equation

The solvability of the equation P(E(x(x*)) — N(x(x*))) =0 is analyzed in [2]
by considerations based on the degree of a mapping.

In the sense of previous notations (see part 3) the condition (1.2) may be
rewritten in the form p,<O0.

Let us define the following notation: for given c,, ¢ >0 let

Q =min |[(E(c;@:) — N(c1¢), @)l (4.1)

where the minimum is taken over the set ¢, € {co+c, co—c}.

Following Theorem viii [2] p. 397 sufficient conditions for the existence of
solution y(t) of the problem (1.1) are: for given c,eR

1. there exist numbers c, d, r, R,, a such that the conditions (3.3) are satisfied

2. (-pr—a(co+c)).(—pi—a(co—¢))<0 4.2)
3. a(kad +b)<Q. (4.3)
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Lemma 4.1. The condition
(=pi—a(co+c)).(—=pi—alco—¢c))<0

is, for given c,, satisfied in the following cases:

(C0>0)A(C>_'(];p|+00>
(c —O)/\(c>—l )
0= aPl
11 1
(EEP|<C0<O)A(_ZP|+CO<C)

11
(CU=EE pl)/\(—co<c)

11

1 1
(a p1<C0<§Ep1)/\(_a p1+Co<C<—C0)

(co=%p.)/\(0<c<—co)
(g o)r(Gr-asc<-a)
Co apll\apn Co<C Co

11

(Co<'2-5pl)A(—co<C)

11
(C0<—2' P pl)/\(—co= c).
Proof.

By direct computation.
Lemma 4.2. For the value Q (from (4.1)) it holds

1. if (coc>0) and
(0<c<co) then Q=—p;,
(c=c¢,) then Q=-p,

(co<c<—%p1+co) then Q=—-p,—a(c—c)
c———p,+co) then Q=0

+C0<C< "_2p|+Co) then Q=p]+a(C—Co)

(
(-
(-

QI»-'QIH

2p, +co—c) then Q=-p,
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(4.4)
(4.5)
(4.6)
(4.7)
(4.8)
(4.9)
(4.10)
(4.11)

(4.12)

(4.13)

(4.14)



2:

3a.

3b.

3c.

(-—éZp.+co<c) then Q=—p,

if (co=0) and
(0<c<—épl) then Q=—-p,—ac

(11
if (pr'<°"<0) and

(0<c<—c¢o) then Q=—p,—a(—co+¢)
(c=—c¢o) then Q=—p,—a(-2co)

(—c0<c<—£p,+co> then Q=—p,—a(c—cy)
(c=—%pl+co) then Q=0
(_;11‘P1+C0<C<—%2p|+co) then Q=p,+a(c—c)
(c=—%2p,+co) then Q=-1

(—52p1+co<c) then Q=—p,

if (co=é%p1) and

(0<c<-c¢) then Q=—-p,—a(-co+c)
(c=—cy) then Q=0

(—c0<c<—-%%p.) then Q=p,+a(c—co)
13
(c=—;§p.) then Q=—p,

13
(—E§p1<c) then Q=-p,

o (1 11
if (Ep1<C0<E§p|) and

(4.15)

(4.16)
(4.17)

(4.18)

(4.19)
(4.20)

(4.21)

(4.22)
(4.23)

(4.24)

241



<O<c< 1 p+ c.,) then Q=-p,—a(—co+¢)

(c L +c.,) then Q=0

a?
(—ép.+cn<c< c(,) then Q=p,+a(—ci+c) (4.25)
(C=_Cn) then Q= p.+a( 2C()) (4.26)
(- c|,<c<——2p.+cn) then Q=p,+ a(c—co) 4.27)
(C= -—2p|+C()) then O=—p| (428)
(—a 2p|+c(,<c) then Q= —p, (4.29)

3d. if (a;%p.) and

(0<c<—-cy) then Q=—p,—a(—co—c) (4.30)
(¢=—cu))then Q=—p, (4.31)
(—co<c) then Q=—p, (4.32)

. 1
3e. if (C"<Z p.) and
(O<C<ép|_C(|) then Q=p|+a(_‘Cn—C)

<c=é—p.~c()) then Q=0

(% p.—c(,<c<—co) then Q=—-p, —a(—c,—¢) (4.33)
(C=_C()) then O="p| (4.34)
(—C()<C) then Q=—p| (435)
Proof.

By direct computation.

5. Conclusion

In the sense of part 3 the number ¢, €R is arbitrary but fixed. The function
xo(t) = co@:(t) is given approximation for ‘“‘solution” y(t). If for given ¢, the
conditions from Lemma 3.1 and from (4.2) and (4.3) are fulfilled then there exists
a solution y(t).

The choice ¢, =% p: implies that x,(t) is the first Galerkin’s approximation
for y(t).
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From Lemma 3.1, Lemma 4.1, and Lemma 4.2 we obtain existence and
approximation theorems. Some of them are
Theorem 5.1. (on Galerkin’s approximation) Let

ka<1/2 (5.1)
1—ka ka’®
_”‘>((1—2ka)'(“b+1—ka b)) (32)
then for x,(t) =é pi@i(t)and c = —% p: there exists a solution y(t) of the problem
(1.1) and it holds

lly — xoll =d, IPy — xol[ S ¢, u(y —x0)=Ro, u(Py —xo)=r.

Remark. The numbers b, b’ are determined by (3.1), k=1/3, k'=
0,29312571 by (3.2), the numbers d, r, R, are determined by (3.4), (3.5), (3.6),
3.7).

Proof of Theorem.

From Lemma 4.1 it follows that for c0=:11- pl<%%p| is (-pr—a(co+c)?)

. (—pr—a(co—¢c))<0if c=—co= —% pi. (The condition (4.12)). From Lem-
ma 4.2 Q = —p, (The condition (4.31)). From Lemma 3.1 it follows that necessari-

ly <3 and for c= —-(I;pl the relations
d> £+ - r=\/2c, Ro>k'ad+r+b’
1—-ka n

must be satisfied.
From condition (4.3) we have

—pi—ab
d<——ka2
and so necessarily
1
_—&p,-l"b —pi—ab
1-ka ka®>
Hence
ka<1/2
1-ka ka’
-»>((7 k) (- ka ) (QED)
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Similarly we can prove
Theorem 5.2. (c,>0) Let

ka<1/3, (5.3)

let there exist a number ¢,> 0 such that
1-ka ka’b® ka’
"p‘>((1 k) (a0 +12 ka>)+ (1 ) G
Then for x.(t)=co@:(t) and c=c(,—%2p. there exists a solution y(t) of the
problem (1.1) and it holds

ly —xoll=d, ||IPy —xol|Sc, u(y —x0)=Ro, u(Py—x0)=r.
Theorem 5.3. (c,=0) Let

ka<1/3, (5.5)

and

1—ka ko’
_’">((1—3ka)'(“b+1—ka b))' (5.6)
Then for x,(t)=0 and ¢ = —é 2p, there exists a solution y(t) of the problem (1.1)
and it holds

Iyll=d, lIPyl|=c, u(y)=Ro, u(Py)=r.
Theorem 5.4. (on Galerkin’s approximation) Let

ka<1/2, 5.7

let there exist 6: 0<6 < -?11_ p: such that

(1 (1—ka ka®
é>(5 (I—Zka)'(ab-"l—ka b)) 5.8)
Then for x..(t)=;}t- pi@i(t) and c =6 there exists a solution y(t) of the problem
(1.1) and it holds ‘
"y - xﬂ" =d, "Py - xﬂ” =c, u(y —x))=R,, “(Py —Xx0)=r.
Theorem 5.5. Let

ka=1/2, (5.9)
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let there exist w: 0<w < —é % p: such that

—an(1 —3ka)>((1—ka).(ab+1’f’;a b)). (5.10)

Then for xo(t) = (i— P+ w)q).(t) and ¢ = _51? p: — w there exists a solution y(t) of
the problem (1.1) and it holds
ly = xoll=d, |[Py—xil[S¢c, u(y —x0)=Ro, u(Py—xo)=r.
Theorem 5.6. Let

12<ka<1, (5.11)
exists numbers w, 8: °
I<w< L . (5.12)
a2l ’
1
0<é< P (5.13)
such that
ka?®
—ae(1 —3ka)>((1 — ka)- (ab T b)) —(1-2ka) - (=p; + ad).
(5.14)

Then for xo(t) = (% pi+ w) @i(t)and c= —% pi1 — w + 8 there exists a solution y(t)
of the problem (1.1) and it holds

ly = xoll|=d, |[Py—xol[=c, u(y —x0)=Ro, u(Py—xo)=r.

6. Example

Let us consider the nonlinear boundary value problem

x"(6)+x(1)=1,2(x(£))” + p(#), x(0) =x(x)=0 (6.1)
with p(1) = —@i(t) + @s(1) + @u(t) + @s(2).
Because ka <1/2, we can use the theorems 5.1 and 5.4. Then p,=—1 and

xo(t) =—0,6649038 sin (t). From (3.1) we obtain that b=0,147667042 and
b'=0,1861173063.

Following Theorem 5.1 we see that inequalities (5.1) and (5.2) are fulfilled.
Next for ¢ =0,83333333 we obtain from Lemma 3.1
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d=1,635001, r =0,6649038 and R,=1,42619. So we that a solution y(t) of the
problem (6.1) exists and it holds

ly(£) — (—0,6649038 sin (1))|| =1,635001

[| Py(£) — (~0,6649038 sin (1))]| =0,8333333 (6.2)
sup |y(t) — (—0,6649038 sin (1)| =1,42619
(0. )

sup |Py(t)—(—0,6649038 sin (¢))| =0,6649038.
(0, )
Following Theorem 5.4 we have to choose 0,73833521 <6 <0,8333333. For
6=0,7384 it is c=0,7384 and from Lemma 3.1 d =1,47678, r=0,589158 and
R, =1,29479. So we have that a solution of the problem (6.1) exists an it holds

ly(£) — (—0,6649038 sin (1))|| =1,47678
|Py(t) — (—0,6649038 sin (1)|| =0,7384 (6.3)

sup |y(t) — (—0,6649038 sin (1))| =1,29479

(0, n)

sup |Py(t)—(—0,6649038 sin (1))| =0,5891158.
(0, x)
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SUHRN

O FUCIKOVEJ OKRAJOVEJ ULOHE
x"(0)+x(0) = a(x() + p(1), x(0)=x(7) =0

Zdenek Schneider, Bratislava

V préci sii uvedené postadujiice podmienky na existenciu rieSenia y(t) okrajovej dlohy (1.1).
Vysledky nie st také vieobecné ako v préci [1], ale je uvedeny odhad chyby rozdielu y(t) — xi(f),
y(t) — x5(t) kde x,(t) je dana aproximécia rieSenia a x;(t) je Galerkinovskd aproximicia rieSenia.

\

PE3IOME

OB KPAEBOW 3AIIAYE ®YUHKA
x"(1) +x(t) = a(x(1)) + p(t), x(0)=x(7) =0

3nenex llnaigep, Bpatnucnasa
B pa6oTe faHbl NOCTATOYHBIE YCJIOBHs CYLIECTBOBaHMA pemlerns y(t) KpaeBoil 3ajadu (1.1).

Hamm focTHXeHuss He Tak o6ume Kak B pabote [1], HO JaHa BO3MOXHOCTH OLEHHTh OLIMOKY s
y(£) = xo(t), y(t) — x5(t) rae x,(t) naHHOE MpUGIHKEHHE U X;(t) NpuGMIKeHHe o ['aslepKHHY peLeHUs

y(t).
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