D
[-A elt

Werk

Titel: Le incisioni di Francesco Londonio

Autor: Marchesini, Cesari G.

Ort: Mainz

PURL: https://resolver.sub.uni-goettingen.de/purl?366382810_1942-43|log33

Kontakt/Contact

Digizeitschriften e.V.
SUB Géttingen

Platz der Gottinger Sieben 1
37073 Gottingen

& info@digizeitschriften.de


http://www.digizeitschriften.de
mailto:info@digizeitschriften.de

UNIVERSITAS COMENIANA
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

XLII—XLIII—1983

AN ITERATION METHOD FOR INITIAL-VALUE
PROBLEMS OF RETARDED DIFFERENTIAL EQUATIONS

KARL STREHMEL and PAVOL CHOCHOLATY

1. Introduction

We consider a system of first order of retarded ordinary differential equations
x'()=f(t, x(t), x(a(?))) for 0=t=T (1.1)

where f: [0, T]X R" X R"— R" and a(t)=t.

Let =inf a(t) for 0=¢t=T. The set of t such that I=¢=0 is called the
“initial set”. We assume that the initial condition is given on the initial set. If £ <0,
then the initial condition is given on an interval; this contrasts with the ordinary
differential equation case in which an initial condition at one point always suffices.
Thus the initial condition is:

x()=@(t) for T=t=0 (1.2)

for a given function @(t) e C([7, 0]; R"). The function a(t) is usually called the
retardation or lag function. It is assumed that a(t) is continuous for t€[0, T).
A indication of the importance of retarded differential equations is evidenced
by the many different areas in which they describe physical systems, such as
electrostatic charge problems, automatic controls, machine tools and biological
systems. Algorithms for the numerical solution of (1.1), (1.2) have been proposed
by El'sgol'ts [3], Cryer and Tavernini [1], Feldstein [4], Feldstein and
Goodman [5], Hutchison [7], Tavernini [8], [9], Zverkina [12], [13]. All of
these algorithms reduce to one step methods or to linear multistep methods if there
is no retardation. The stability of linear multistep methods for retarded differential
equations has been considered by Cryer [2] and Wiederholt [10], [11].
Wiederholt shows that the stability regions for retarded differential equations are
significantly different from the stability regions for ordinary differential equations.
In the present paper we describe an iteration method for solving the
initial-value problem (1.1), (1.2). In this method the problem (1.1), (1.2) is
reduced to a sequence of initial-value problems for a system of ordinary differential

249



equations. These systems can be solved using numerical methods for ordinary
differential equations.

2. The iteration method

We shall require that the following assumptions are satisfied:

Al: The scalar function ¥(¢, u, v) is positive and continuous on [0, T] and
for 0=u, v=2r.

A2: W(t, u, v) is nondecreasing in v for fixed (¢, u) and the initial-value
problem

u'(t)=w(t,u,u), 0=t=T,
u(0)=0

has only the trivial solution u(t)=0.
A3: The initial-value problem

u'(£)=w(t, u(?), o(t)), telo, T]
u(0)=0

has a unique solution u(t), 0=u(t)=2r which any be found for each fixed
continuous function a(t), o(t) €[0, 2r].
A4: Let the function f(t, x, y), x =(x1, X2, ..., X,)",

Y= Y2 s ¥a)',
be continuous in
G: ={(t, x, ))IO=t=T, |x|=r, |y|Sr,i=1,2,..., n)}
and let

"f(t’ X, )’)-f(t’ x*, y’.()"aog q’(t’ ”x —x*"@’ ”Y _y*“m)

for all (¢, x, y); (t, x*, y*)eG.
AS5: The initial-value problem

x'(8)=f(t, x(t), y(1))
x(0)=@(0)

has a unique solution x(t), |x.(t)|=r, i=1, 2, ..., n, which may be found for each
fixed continuous function y(t) with |y.(¢)|=r, i=1,2, ..., n.
Theorem: Let the assumptions A1—AS5 be fulfilled. Then the initial-value

problem (1.1), (1.2) has a unique solution which may be found with help of the
iteration method:
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x:|+|(t) =f(t, x,..n(t), xn(a(t)))
xn+1(t) = @(t) for te(z, 0] n=0,1, ..., 2.1)
xo(t) = @(t) for te[z, 0], xo(t) = @(0) for [0, T].

The convergence of the sequence {x.(¢)} on [0,T] is given by

[1x.(6) = x(D)]| - = €. (2), n=0,1, .... 2.2)
where the sequence {€.(t)} satisfying the initial-value problems

Enei(t) = W(t, €q:1(1), €.(a(2))), te[0, T]
£.1(0)=0, n=0,1, ..., (2.3)

converges uniformly to zero and &o(t)=2r; €,..(t)=0 for [z, 0].

Proof:

a) The uniform convergence of the sequence {&,(t)} defined by the recurr-
ence relation (2.3) must be proved. Let €,(t) be a unique solution of the problem

e.(t) = W(t, &.(1), €a-1(a(t))) ;
£.(t)=0 for te[z,0]. 2.4)

From (2.3) under the induction hypotheses that €,(t)=¢,-,(t) and from the
assumptions Al and A2 follows that

0=e, ()= W(L, €nsi(1), En1(a(D)))
which implies

Oés,.+,(t)§f' Y (s, €n+1(5), €n-1(a(s))) ds for te[0, T],
e(t)=2r, n=1,2, ....

From (2.4) we obtain €,.,(t) = ¢,(¢) directly.

Hence, the sequence {¢,.(t)}, n=0, 1, ..., is nonincreasing for each t € [0, T).
Then from &,(¢#)=0 and from the assumption A2 we obtain that the limit of the
sequence {€,(¢)} must be zero. Now, the uniform convergence to zero must be
proved. From (2.4) we obtain

lim e,(1) = lim [ "W(s, 6(s), £ns(als))) ds = (1)

where £(t) is a solution of the problem as in A2. Therefore we have lim ,(t) =0
for n— o, while £(¢)=0. From Dini’s theorem (see Giinther/Beyer [6]) we can
assert that the sequence {&,(t)} converges uniformly as well as monotonously to
zero on [0, T]. '

b) The existence and uniqueness of the solution of the initial-value problem

(1.1), (1.2) as a limit of the sequence {x,(t)} described by the recurrence realation
(2.1) or
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J” f(s, x.(s), xn—1(a(s))) ds on [0, T]
x,.(t)={" , n=1,2, ..

@(¢) for [, 0]

with xo(t) = @(t) for te[, 0], xo(t)=@(0) for te[0, T] must be proved, The
sufficient condition for this is the proof of fundamentality of the sequence {x.(t)}

on [0, T).

Let us now indicate

Un, m(1) = || Xa (£) = X (D) | =, m>n,

then we have

U (1) = || [ 165, 5005), 501 (@I = 1G5, 305D, X)) i

o

= [ 1765, 5u(5), x0-s(@()) = 1G5, X (5D, X (@] .

With the assumption A4 we obtain

u...m(t)§J: W(s, ||%(s) = X ()|, [ Xn-1(a(s)) = xm-1(a(s))]]) ds

- f W5, s, o), Unet,mr(a(5))) ds. 2.5)

Let us give
un—l‘k(t)gsn-—l(l)y k>n—-1,

then (2.5) under the assumption A2 implies

.S [ WCS, (), Eaa(@(5))) ds.

Now, under the assumption that s,;(t) is an unique solution of the problem

u'(t)="W(t, u(t), e.1(a(t)))
u(0)=0

we have
0=u, m(t)=e.(t) foreach m>n. (2.6)

Since €,.1(t)=¢.(t), n=0, 1, ..., and lim €,(t) =0 for n— =, then &,(t)=¢e* for
each n> N and the relation (2.6) imply the fundamentality of the sequence {x.(t)}
on [0, T]. If m— o then the limit of (2.6) is (2.2). Let x(t) and y(¢) be two
different solutions of (1.1), (1.2). Easily can be proved that
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lx.(6) = y (D)l - = €. (1).
Then

llx(8) = (Ol = llx(2) = 2 (Ol + 20 (1) = (|- = 2. £ (1) .

After limiting for n—  we have x(t)=y(t).
This paper was written during the stay of Dr. Strehmel at the Department of
Numerical Mathematics of Comenius University with the members of department.
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SUHRN

ITERACNA METODA PRE ZACIATOCNU ULOHU
DIFERENCIALNYCH ROVNIC S ONESKORENYM ARGUMENTOM

Karl Strehmel, Pavol Chocholaty

V préci sa uvidza iteraénd metéda pre numerické rieSenie diferencialnych rovnic s oneskorenym
argumentom. Sustava diferencidlnych rovnic s oneskorenim sa pritom redukuje na postupnost diferen-
cidlnych rovnic bez oneskorenia. Stanovené si postauijice podmienky existencie a jednoznaénosti
rieSenia zatiato¢nej dlohy s oneskorenim.

PE3IOME

UTEPALIMOHHBIM METO[ U1l 3ANAYM KOWM OUOOEPEHLIMAJIBHBIX
YPABHEHUW C 3AIMNA3IBIBAHUEM

Kapn llITtpemen, [aBon XoxonaTsi

B paGote paccMaTpuBaeTCst HTEPAUMOHHBI METON [NISl YHCIIEHHOTO PeLieHMs i epeHIHaND-
HBIX YpaBHEHHA c 3anma3abiBanHeM. CucTeMa NHddepeHUHaNbHBIX yPaBHEHHI C 3ama3bIBaHHEM
CBOAMTCHA K IIOCC/IEAOBATENLHOCTH NH(M(PEPEeHIHANBHBIX ypaBHEHH# 6Ge3 3ama3fbIBaHui. YCTaHOB-
JIMBAIOTCA NIOCTATOYHbIE YCIOBHMS [UIS CYNIECTBOBAHHA H E€JMHCTBEHHOCTH pellleHMs 3ajauyn Koum
C 3ama3fbIBaHKEM.
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