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THE NP-COMPLETENESS OF THE HAMILTONIAN
CYCLE PROBLEM IN BIPARTITE CUBIC PLANAR GRAPHS

JAN PLESNIK, Bratislava

It is well known that the hamiltonian cycle problem is NP-complete even for
cubic planar graphs [2], or cubic planar digraphs [5], or bipartite graphs [4]. The
purpose of this paper is to note that the first two results can be extended to bipartite
graphs (digraphs). The same is true for the hamiltonian path problem. To prove
these results it is sufficient to change only some couplings in the constructions from
[2] and [5]. Therefore we shall not give full constructions, but the reader will be
referred to these papers (in fact, the paper [5] will suffice).

Our terminology is based on [3]. If u is a point of a digraph then the sum of the
indegree of u and the outdegree of u is called simply the degree of u. A graph or
digraph is cubic if each point has degree 3. Let F be a face of a plane block (a graph
without cutpoints), then the length (the number of lines) of the boundary of F is
called the length of F.

Before stating the main results, we give the following assertion whose proof is
obvious.

Lemma. If the length of each interior face of a plane block G is even then the
graph G is bipartite.

Theorem 1. Both the hamiltonian cycle problem and the hamiltonian path
problem are NP-complete even in the case of bipartite cubic planar graphs.

Proof. The proof differs from that of [5] only in some details: (1) Everywhere
consider undirected lines instead of arcs (directed lines). (2) The “3-input or”
realize as in Fig. 1 and the “exclusive-or line” as in Fig. 2. (3) Replace the pairs of
vertices of degree 2 by Fig. 3. (4) The crossing of exclusive-or lings is solved as in
Fig. 5 of [5], but now all the lines are undirected.

It is easy but tedious to verify that the obtained graph has the required
properties and therefore the details are left to the reader. We recommend to use
the foregoing lemma.

Theorem 2. Both the hamiltonian cycle problem and the hamiltonian path
problem are NP-complete even in the case of bipartite cubic planar digraphs.
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Fig. 1

Fig. 2

=

Fig. 3

To prove Theorem 2 it suffices to verify that the digraph constructed in [5] is
bipartite. This is again left to the reader (use Lemma).

Remark. Garey, Johnson and Tarjan [2] have proved the NP-complete-
ness also in the case of 3-connected cubic planar graphs. Therefore one might want
to strengthen Theorem 1 by adding the 3-connectivity constraint. This task remains
open. Note that the result of [2] is based on the Tutte graph [6] which-is
3-connected, cubic, planar, and nonhamiltonian. While the Horton graph (see [1])
is an example of nonhamiltonian 3-connected cubic bipartite graph, no such
example is known and Barnette (1970) conjectured that there is none (cf. [1]) if the
planarity is required too.
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SUHRN

NP-UPLNOST PROBLEMU HAMILTONOVSKEJ KRUZNICE
V PARNYCH KUBICKYCH PLANARNYCH GRAFOCH

Jan Plesnik, Bratislava
Ukazuje sa, Ze problém zistit, ¢i ma graf hamiltonovsku kruznicu je NP-iplny dokonca pre parne
kubické planiarne grafy. Rovnaky vysledok plati aj pre problém hamiltonovskej cesty. Analogicky
vysledok je dany aj pre digrafy.
PE3IOME

NP-ITOJTHOTA ITPOBJEMbI TAMHIIbTOHOBA LIHUKIIA B IBYOOJbHBIX
KYBUYECKHX I[TNIOCKHUX I'PA®PAX

STu [Inecuuk, Bpatuciasa
IToka3aHo, YTO NMpo6neMa HaXOXAEHHS FraMHILTOHOBA IHKIa — NP-nosHas U 1S ABYAONbHbBIX

KYOHYeCKHX IIOCKHX IrpacoB. ITO YTBEPXKIECHHE HMEET MECTO ¥ ISt TPOGNIeMbl raMWIbTOHOBOW ITYTH.
AHaJIOTHYHBIA pe3yNbTaT JaH H [UIS OPHEHTHPOBAaHHLIX rpacgoB.
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ON A GENERALIZATION OF MENGER’S THEOREM

LUDOVIT NIEPEL, DANIELA SAFARIKOVA, Bratislava

1. Introduction

There are many results concerning the connectivity and the edge connectivity
of a graph G. The clasical result in this direction is the well known Menger’s
theorem. For applications it is often useful to investigate the paths with bounded
lengths. In [1] authors L. Lovédsz, V. Neumann-Lara and M. Plummer
investigate the relation between the maximal number of disjoint paths with
bounded length connecting two non adjacent vertices in a connected graph G and
the minimal number of vertices in G the removing of which destroys all those
paths.

In the present paper we study the relation between the maximal number of
edge disjoint paths with the length less than n and the minimal number of edges
removing of which interrupts all those paths.

2. Formulation of the problem and general results

We consider nonoriented finite graphs without loops or multiple edges in the
sence of [2]. Let u and v be two disjoint vertices of a graph G. Let n be an arbitrary
integer. We denote by B,.(u, v) the maximal number of edge disjoint paths
connecting the vertices u and w with the length not exceeding n. By H,(u, v) we
denote the minimal number of the edges of the graph G removing of which implies
destroying of all the u — v paths with the length less or equal n.

From the Menger’s theorem we obtain

B.(u, v)=H,(u, v)

in the case n=q where q is the number of edges of grah G.
It can be proved that in case n <q there holds the inequality

B.(u, v)=H,(u, v) (6}
One can easy show that the inequality (1) may be sharp. For the graph-G in
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Fig. 1
the Fig. 1 we have
Bi(u, v)=1H,(u, v)=2 )
In the following considerations we try to estimate the ratio

H,(u, v)
B.(u, v)

One can easy prove that

H,(u, v)
<\ V)
1’Bn(u, "

This trivial estimation can be improved as follows from the following theorem.
Theorem 1. Let n be an integer and u, v be two disjoint vertices of

a connected graph G. Denote m = n — d(u, v) where d(u, v) is a distance of u to
v. Then

H,(u, v)

B.(. v)=m+1

holds.

Proof. The proof proceeds by the induction on m. Denote no=d(u, v).

1° For m =0 we have n = d(u, v) = n,. That means we consider only the u — v
geodesics( shortest paths joining vertices u and b). We form a digraph D
associated to G by the following manner. Graph G and digraph D have equal sets

of vertices, and if xy is an edge of G then (x, y) is an arc in D if
d(x, v)>d(y, v)
Two statements follow from this construction:

(1) every u— v geodesic yields a dipath from u to v,
(2) every u —v dipath in D corresponds to u —v geodesic in G.

The first statement is obvious. Suppose (2) is false, then the corresponding
u — v path has the length at least n, + 1. Let (u, x) be the first edge of such a path.
In G d(u, x)=1 holds and d(x, v)=no+1—d(u, x) = no. That means d(x, v)=

d(u, v) and D does not contain the edge (u, x), what is a contradiction. From (1)
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and (2) we obtain

B"n(u’ v)=B'E:y(u’ v)
H,(u, v)=Hn(u, v)

In the digraph D all u — v dipaths have the length n, and from the Menger’s
theorem it follows that

B,ﬁ,(iz, v)=Hp(u, v)

and hence
B.,(u, v)=H,(u, v)

what is the statement of the theorem for m =0.

2° For m>m,=0 it holds n>d(u, v) = n, and obviously
B.,(u, v)=B,(u, v).

. Using the first step of the induction we have B, (u, v) = H,(u, v). Let X
denote a set of edges the removing of which destroys all u — v paths with the length
not exceeding n,. Let V be the vertex set of G and H be a set of edges of G. Then
G — X denotes the graph G — X =(V, H — X). For the number of edges of X we
have

| X| = H,(u, v)=B,(u, v)=B,(u, v).
For the distance between u and v in G— X
dc_x(u, U)>no

holds.
There are two possibilities

a) X covers all u —v paths with the length =n. Then
H,(u, v)=H,(u, v)=B,(u, v)=B,u, v
and hence

H,(u, v)
B.(u, v) al

b) X does not cover all u — v paths with the length =n. Denote mo=n —
do-x(u, v). As

do-x(u, v)>d(u, v)=no
then
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me<n—no=m
By the induction hypothesis in the graph G — X

H? (u, v) o

m=mo+l

holds.
Let Y be a set of edges of G destroing all u — v paths with length =n, then Y

is a union of X and a set of all edges destroying u — v paths with the length =n in
the graph G — X.

[Y|=|X|+HS *(u, v)| X| + (m0o+ 1)BEX(u, v)
B.(u, v)+(my+ 1)B,(u, v)(mo+2)B,(u, v)
(m+1)B.(u, v).

Since |Y|=H,(u, v), we have

H,(u, v) o
B,,(u,.v)=m+1
q.e.d.
. . . H,(u,v) .
Now we find some estimations of the ratio m depending only on n.

Theorem 2. Let n be an arbitrary positive integer and u, v two distinct
vertices of a connected graph G. Then

Bn =7 )

Proof. Let k be any natural number and P, a u — v geodesic in G. Let us form
a new graph G, by removing all the edges of P,. Set d,(u, v) equal to the length of
a shortest u — v path in G,. Then the inequality

d,(u, v)=d(u, v)

holds.
Let P, be a u — v geodesic in G,. Then we obtain the graph G, by removing all
edges of P, from G,. Clearly

dy(u, v)=d,(u, v)=d(u, v).

We continue in this manner until we obtain a graph G, with u — v geodesic P, of
the length =k but u — v geodesic P, ., is of the length > k. Denote this graph G’
we denote d’(u, v) and similary B/(u, v), H,(u, v) respectively. It can be shown
that

d(u,v)Z2k+1
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In this manner we have removed from G r edge-disjoint u — v paths and then
for G’

B.(u, v)=B,(u,v)—r

holds.
The minimal number of the edges of G remowing of which destrosys all u — v
paths with the length =n we can estimate in the following way

H,(u, v)=H)(u,v)+r.k
If G’ is connected then by Theorem 1 we have
H;(u, v)=(m+1)B/(u, v)

where m=n—d’'(u, v).
So

Hy(u, v)=(n—d'(u, v)+1)Bi(u, v)=
S(n—(k+1)+1)B;(u, v)=(n—k)Bi(u, v)

Hence

H,(u, v)=(n—k)B.(u, v)+r.k=(n—-k)B.(u, v)—r)+r.k=
=(n—k)B.(u, v)+r.(2k—n)

n

For k = [2
Now let G’ be disconnected. Then
H(u, v)=B(u, v)=0

and the statement trivialy holds.

] we have r.(2k — n) =0, and the statement of Theorem 2 follows.

q.e.d.
The estimation from Theorem 2 is sharp for n =2, 4 but it is not for n =3 as
follows from Theorem 3.
Theorem 3. For any connected graph G with distinct vertices u, v we have

Hi(u, v)=Bs(u, v).

Proof. We divide all vertices of G except for u, v into classes as follows. The
vertex w belongs to (i, j) if ’
d(u,w)=i and d(w,v)=j.

As we are interested only in the paths of the length not greater than 3, we omit
all classes (i, j) with i + j> 3. The scheme of such a graph follows from Fig. 2. We
denote it G.

We form a new graph G, in the following way. A set of vertices of &, is the set
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of edges of G and vertices u, v. The vertex u (or v) is adjacent to a vertex z iff the
vertex u (or v) is incident with corresponding edge in G. Two vertices x and y or
1 are adjacent if the corresponding edges in G are adjacent and both of them
belong to a u—v path with the length not greater than 3. The schema of such
a graph is shown in Fig. 3. From this construction immediately follows
(1) There is one to one correspondence between edges of G and vertices of
G, except for vertices u, v,

(2) Every u—v path in G with length =3 corresponds to exactly one u—v
path in G, with length =4 and conversly.

: (
@

u@@v
b - d g

Denote by A $'(u, v) the maximal number of disjoint paths in G,. One can
easy prove that

A$(u, v)=BS$(u, v).

Denote V$i(u, v) the minimal number of vertices which deletion destroys all
paths of length not exeeding 4. Then we have

V$(u, v)=H$(u, v)
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From Theorem 3 of [1] we have
V$i(u, v)= A% (u, v)
hence
B$(u, v)=HS(u, v)

and the proof follows.
q.ed

3. Some constructions

In oder to find any lower bound for the maximum of the ratio

H,(u, v)
B.(u, v)

for any graph we form some constructions.

Let L be a u — v path of the length n — ¢. Denote its vertices u = xo, xi, X2, ...,
x,—.=v. Now we add (n—t).t new vertices divided into n—t classes with ¢
vertices. Now we construct a graph G, in the following way. Every vertex of i-th
class is adjacent to vertices x;_, and x; of the path L and the graph G, does not
contain any more edges except the mentioned above. Any vertex added to the path
L with incident edges we call a “‘roof”. so we have t roofs over every edge of L.

Take any u — v path P in G, of the length not exeeding n, such that it contains
exactly r roofs. For its length d(P) we have

dP)=n—t—r+2r=n

that means r=t¢.

n—t
2
there exists at least one edge common for P, and P, lying on the path L. So in the

case

Let P, and P, be any u — v path of G, with not more than roofs, then

we have B,(u, v)=1.

Now we show that in G, we have
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H,(u,v)=t+1.

Suppose H,(u, v)=t. That means there exist t vertices the removing of which
destroys all u — v paths with the length =n. Without loosing generality we can
suppose that all t-edges are members of the path L. There exists an u — v path P’
passing these t-edges across the roofs. For its length we have

d(P)=d(L)—t+2t=n

That means deleting of t-edges is not enough to destroy all u — v paths with
the length =n.
For the ratio we have

Ban 5]

The graph G, we have constructed has the edge connectivity A(G,) =2 and the
connectivity x(G,)=1. We form a graph G, . with greater connectivity and edge
connectivity, respectively. .

Let k =2 be an arbitrary integer. Set N=max {k — 1, t}. In the graph G, we
replace ¢ roofs lying over any edge of G, by a complete graph Ky. Every vertex of
i-th copy of Ky is adjacent to both vertices x; and x,., respectively. Add n — (¢t + 1)
new copies of the graph K, in such a way that all vertices of i-th copy of Ky and
i + 1-th copy are adjacent to all vertices of a new copy of Kx. See Fig. 4.

From thc.e f:onstruction of the graph G, , one can see that connectivity and
edge connectivity of the graph G, , is at least k and the inequality

B (5]

holds.
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From the above construction and Theorem 2 we have

[5]+1sww petes 5]

where G is an arbitrary finite graph.
The result of [1]

Vi(u,v) o \/
SYPA (u, v) A.(u,v)” V2
cannot be improved using the construction of G, _, as this graph is not a lme graph
of any graph.
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SUHRN
O JEDNOM ZOVSEOBECNENf MENGEROVEJ VETY
Ludovit Niepel, Daniela Safafikov4, Bratislava
Prica pojed;léva o0 vztahu medzi po¢tom disjunktnych ciest dizky = n v grafe, ktoré spéjaji dva
pevne zvolené vrcholy a minimédlnym po&tom hrén, ktoré treba vynechat na ich prerusenie. Vysledky si
presné pre hodnoty n=1,2, ..., 5. V ostatnych pripadoch si uvedené horné aj dolné odhady.
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PE3IOME
OBb OHOM OBOBIIEHHMHW TEOPEMbBI MEHT'EPA
JIvynosut Huenen, [Jauuena llacapxukosa, BpaTucnasa
B pa6oTe n3y4aeTcs OTHOIIEHHE MEX/Y YHCIIOM HEeNepeceKaloUMXcs MPOCThIX Lene [UIHHBL = n

COEMHAIOLIMX JIB€ BEpPIIMHbI rpac)a ¥ MUHUMAJILHBIM YHCJIOM pebep, KOTopble HYXHO OTOpPOCHTD 1St
pa3neneHus 3Tux uenei. [Ipegnaraemsie pe3yasTaThl TOYHBIE A n=1, 2, ..., 5.

284



	
	Article


