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ON PALINDROMIC NUMBERS

HELENA KRESOVA, TIBOR SALAT, Bratislava

Let g be an integer, g =2. The expression of the positive integer a in the scale
of g:

a=cg"+cog" '+ ... +co
(n=0, ¢ are integers, 0=¢, <g, k=0, 1, ..., n, ¢, # 0) will be shortly written as
a=(cCuz1 ... C0)g (1)
The number a (see (1)) is said to be a palindromic number (in the scale of g) if
(CuCnzi ... c)g =(coci ... C1)g

Hence if a is a palindromic number, then c,#0# ¢, (cf. [2], p. 216).
E.g. the numbers 121,2332 are palindromic (in the scale of 10).
In [1] (p. 63) the following generalization of the scale of g is introduced:
Let {q. }x-: be a sequence of positive integers, g, =2 (k =1, 2, ...). Then each
positive integer a can be uniquely expressed in the form

A=Ci.qi ... @u+Cor1 . Qi ... qur + ...+ .q, + Co, )

where n=0, ¢, (k=0, 1, ..., n) are integers, 0= c, <qu+, (k=0, 1, ..., n), c, #0.
The equality (2) is said to be the expression of the number a in the scale of
Q=q\, q3, ... and it will be written in the form

a=(CCn_i ... c)Q (3)

Putting g =q=2 (k=1, 2, ...) we get the scale of g.

The notion of palindromic numbers can be extended for the scales of
Q=gq\, qa, .... The positive integer a (see (3)) will be called a palindromic number
in the scale of Q=gq, q, ... if

(caCn-i ... €))Q =(coci ... c,)Q

Hence, if a is a palindromic number in the scale of Q = q,, g, ..., then co# 0 # c,.
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In this paper we shall prove some elementar results on the set of all
palindromic numbers in the given scale.

Theorem 1. Let
P= (p|<p3<.}

be the set of all palindromic numbers in the scale of Q = q,, q., .... Then we have
Y pi'<+w
k=1

Proof. Denote by P, (j=1, 2, ...) the set of all palindromic numbers a in the
scale of Q =q., g, ... for which
qi...q=a<qi.q:... §.qj+ 4)
Each such a number has the form
a=c¢.q...q+C¢j-1.qi ... qj-+ ...+ co, ®))
0=ca<qua (k=0,1,....)), ¢#0.

Further c,=c¢;, c.=c;-\, ..., qy=¢j-14. From this we get easily the following
eatimatimation for the number |P,| of all palindromic numbers of the form (4)

[Pl=q:.q: ... qu.. (6)
From (4), (6) we get

A= 2 a = Qi
y =

a€P; ql e qi
N T W
@G-Gir - Qe 279 (V2
Hence '
SA<+w ™
j=1
Since

the assertion follows on the basis of (7).

Let AcN={(1, 2, ...}, denote by A(n) the number of all a € A with a=n. If
there exists
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— im A
h(A)=Ilim P

n—so

then this number is called the asymptotic density of the set A (cf. [6], p. 100; [7]).
It is a well-known fact that if >, a™'< + o, then h(A)=0 (cf. [3]; [5], p. 100;

aeA
[6]). Hence we get from Theorem 1 the following result.

Corollary. Let P have the same meaning as in Theorem 1. Then we have
h(P)=0.

In what follows we shall show that in the case of the scale of g =2 it is possible
to determine the exponent of convergence (cf. [4], p. 40) of the sequence of all
palindromic numbers. We shall show that this exponent of convergence does not
depend on the number g.

Theorem 2, Let g be an integer, g =2, let

p|<p2<... (7)

be the sequence of all palindromic numbers in the scale of g. Then the exponent of
convergence of the sequence (7) is equal to 1/2.

Proof. Denote by P, the set of all palindromic numbers a in the scale of g for
which

a*SEa<g™™ (n=1,2,..).
Each a € P, has the expression (in the scale of g)
a=¢C.9"+¢Car.g"""'+... +co, (8)
0=ca<g (k=0,1, ..., n), c.#0.

Similarly as in the proof of the foregoing theorem it can be showed that the
estimation v

|P.|= g% 9)
holds for the number | P, | of elements of the set P,. But then we have (for o>0) on
the basis of (8) and (9)

=) g
B.= Y a°=—ap
aeP, g

Hence for 0>1/2 we have Y B, < + % and since

n=1

@ a—1 Ll

S pi°=>k°+ B,,
k=1 k=1 n=1
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we see that the series

I (10)

converges for > 1/2.
We shall show that the series (10) diverges for 0<o=1/2.
It can be easily verify that if n is an even number, n=2s (s=1), then

|P.|Z2(g—1).9"=(g - 1).¢}
and if n is an odd number, n=2s5+1 (s=0), then
[P.|Z(g-1).9"=(g9-1).¢**
Hence for every n we have
|P.|Z(g-1).*" (11)

On account of (11) we obtain for 0>0:

-1
-0 > g . ani-a)

a = o+l g -
aepb,

From this it can be easily chacked that the series (10) diverges for 0 =1/2.

With respect to the foregoing facts it follows from the definition of the
exponent of convergence (cf. [4], p. 40) that the exponent of convergence of the
sequence (7) is equal to 1/2. This ends the proof.

The foregoing theorem enables us to give a simple estimation from below for
the n-th term of the increasing sequence of all palindromic numbers in the scale
of g.

Theorem 3. Let g be an integer, g=2, let

- p|<p2<...

be the sequence of all palindromic numbers in the scale of g. Then for each € >0
there exists such an n, that for each n>n, we have

£

Dn > ni

Proof. On account of a well-known formula for the exponent of convergence
(cf. [4], p. 40) it follows from Theorem 2 that

1 . log n

Choose 1> 0 such that
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(%+n>-l>%—e (13)

Then on account of (12) there exists such an n, that for each n> n, we have

len 1,
From this we get
Dn> niz
and so owing to (13) we obtain
Dn> ntc
This ends the proof.
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PE3IOME
O MAJIMHOPOMUYECKHUX YUCIAX
Enena KpecoBa, Tn6op llanat, Bpatuciasa

Iycts
a=cg"+...+co=(c, ... c,)g

BbIPaXXE€HHE HATYPaNbHOTO YHC/IAa 2 B CHCTEME CUHCIIEHHS C OCHOBaHWeM ¢ =2. Yucio a HasbIBaeTcs
NAJHHAPOMHYECKHM (B CHCTEME CYHCIIEHHS C OCHOBAaHHEM g) €CIH

(C,. oo Co)g =(Cﬂ v C,.)g

B pa6oTe g0Ka3aHO YTO MOKa3aTeNb CXOMMMOCTH MOCJIEA0BAaTEILHOCTH BCEX MATHHOPOMHYECKHUX
yucen (B.CHCTEME CYHMCIIEHHA C OCHOBaHHEM ¢) paBHbIH uyucay 1/2 pns Beskoro g =2.

SUHRN
O PALINDROMICKYCH CISLACH
Helena Kresovi a Tibor Sal4t, Bratislava

Nech
a=c,.g"+...+co=(c, ... co)g

je vyjadrenie prirodzeného &isla a v g-adickej siistave, g =2. Cislo a sa nazgva palindromickym ¢&islom
(v g-adickej sistave), ak

(cn...c)g=(co... €)y-

V prici je dokdzané, Ze exponent konvergencie postupnosti vietkych palindromickych &isel (v g-adicke;j
siistave) sa rovnd 1/2 pre kazdé g =2.
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ON PROPERTIES OF ARCHIMEDEAN ORDERED FIELDS
THAT ARE EQUIVALENT TO THE COMPLETENESS

TIBOR SALAT, ANNA TARABOVA, Bratislava

The notations and definitions of fundamental notions used in this paper are
taken from [2] and [3]. '

The ordered field (A, +, ., <) is said to be complete if each fundamental
_ sequence of elements from A is convergent in A. The ordered field (A, +, ., <)
is said to be continuously ordered if the ordered set (A, <) is continuously
ordered, i.e. if every non-empty subset of A which is bounded from above has the
least upper bound in A.

It is well-known that the ordered field (R, +, ., <) of all real numbers can
be characterized as an Archimedean complete field. This fact guarantees the
importance of the study of ordered fields for the elementary mathematics in
secondary schools and theoretic arithmetics.

In [2] (pp. 95—102) seven properties of ordered fields are given (these
properties are denoted by I—VII) that are mutually equivalent. It follows from
these equivalences that an ordered field (A, +,., <) is continuously ordered if
and only if it is Archimedean and complete. In this paper we shall give some further
properties of ordered fields that are equivalent to the property of continuous
ordering (or to the arbitrary property from the properties I—VII on pp. 95—102 of
(2D.

Definition 1. Let (A, +,., <) be an ordered field. The set M c A is said to
be a compact set if every sequence of elements from M contains a convergent
subsequence, the limit of which belongs to M.

Theorem 1. An Archimedian field (A, +,., <) is complete if and only if
every closed and bounded set M c A is compact:

For the proof of Theorem 1 we shall use the following two auxiliary results.

The following Lemma 1 is a simple generalization of a result from [1].

Let us remark that a sequence {a, }-, of elements of an ordered set A is said
to be monotone if it is nondecreasing i.e. if

a=Ea=S...Sa.Sa,aS ...
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or if it is nonincreasing i.e. if

IV

aZa=...2a, =

Lemma 1. Every sequence of elements of an ordered set contains a monotone
subsequence.
Proof. Let

{ X0 Jr (1)

be a sequence of elements of an ordered set A. Denote by N the set of all positive
integers. Let P be the set of all n € N with the following property: there is an n,
(depending on n) such that for each i > n, we have x; Z x,,. Similarly denote by Q
the set of all n e N with the property: there is an m, (depending on n) such that for
each i > m, we have x; = x,. Put S = N — (PuQ). Then at least one of the sets S, P,
Q is infinite.
Let the set P be infinite, let
P={p,<p.<..<p<..}.

Put n, = p,. Since n, € P, we have x,, = x,, for all sufficiently large j =2. Denote
by jo the minimal number from these j’s. Put n, = p;. Hence x,, = x,,, n.€ P, a.s.o.
So by induction we can construct a sequence

X EX = 52X, =

that is a monotone subsequence of (1).
If the set Q would be infinite, then we could construct a nonincreasing
subsequence of (1).

If both P, Q are finite sets, then there exists such an m that
{m+1,m+2,....m+k,..}cS.

Put n,=m + 1. Since n, ¢ PUQ, there is an infinite number of i’'s with x,, <x; and
simultaneously an infinite number of i’s with x, > x;. Using a consideration which
is similar to the previous consideration we can construct in this case a decreasing
subsequence of (1) and also an increasing subsequence of (1).

Lemma 2. Every monotone bounded sequence of elements of an Archime-
dean ordered field is fundamental.

Proof. Let (A, +,., <) be an Archimedian field, let

== . SaSaan=... )
be a sequence of elements of A (if we would have

LZEBLE. 2GRz G =...,

then the proof would run in a similar way).
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According to the assumption there exists such an ae A that a,=a
(n=1,2,..).
Construct the sequence

0A<1A§az—a.+1,\§a'3—a,+l,g§... (3)

Let e€ A, e>04. Choose an se N such that 1/s<e. There exists such
s because A is Archimedean. From the same reason there exists such an n € N that

n%éa—a|+l,‘ (4)
Denote by V the set of all ke N for which

a,.—a1+1,q§k

[ZR
~~
S
Il
—aa
-
!\J
N’

On account of (4) we have V#@. Hence there exists min V = p. By the definition
of p there exists such je N that

a,~—a,+1A>(p—1)% (5)

For arbitrary numbers k, i > j (let e.g. k = i) we get from (5) and the definition of p

(p—l)-}<ai—a,+1A§ak—a,+1,‘§p%

From this by the choice of s we obtain |a; — a.| <e. Hence (2) is a fundamental
sequence.

Proof of Theorem 1. Let (A, +,., <) be an Archimedean ordered com-
plete field. Let M c A be a bounded and closed setin A and x,e M (n=1, 2, ...).
According to Lemma 1 there exists a monotone subsequence

{xn,‘}:=1 (6)

of the sequence {x.};-,. It follows from Lemma 2 that the sequence (6) is
fundamental. Since the field A is complete, the sequence (6) converges. Since the
terms of the sequence (6) belong to the closed bounded set M, the limit of (6)
belongs to M, too. Hence M is a compact set.

2. Let every bounded and closed subset of the field A be compact. Let

{Yn}n=1 (7)

be a fundamental sequence of elements of A. Then (7) is bounded ([2], p. 73).
Therefore there exists such b € A that

Iy|Sb (n=1,2,..).
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It is easy to verify that the interval [—b, b] is a closed bounded set, therefore
according to the assumption this interval is a compact set. Since y, (n=1, 2, ...)
belong to [—b, b], there exists a convergent subsequence of (7). But it is
a well-known fact that the fundamental sequence is convergent if it has
a convergent subsequence ([3], p. 41). Hence (7) is a convergent sequence. This
ends the proof. ,

In what follows denote by T the topology on A (A is an ordered field) the
open basis of which is the system of all open intervals (a, b) with a, be A.

Theorem 2. An Archimedean field (A, +, ., <) is complete if and only if
the topological space (A, T) is connected.

Proof. 1. Let the Archimedean field (A, +,., <) be complete. Let us
assume that the space (A, T) is disconnected. Then we have

A=XUY, XnY=0, X+0+Y,

X, Y are open (and simultaneously closed) subsets of A.
Let us choose x;€ X, y:€ Y and e.g. let x; <y, (in the contrary case, i.e. if
y1<xi, the proof runs analogously).
Let us construct the element (x,+y\)/2€ A. If this element belongs to X
(belongs to Y), then we put x, = (x: + y1)/2, y2=yi(x2=x1, y2=(x: +y1)/2),

a.s.o. So by induction we construct two sequences {xi } <=1, { y« } k-1 of elements of A
with the following properties:

x,.eX, ykGY (k=1,2,...), (8)

XSy (k=1,2,..),

Yi—x

1
2k—1

Ve — Xk = (k=1,2,..). 9)

Hence the sequence {x}r-; is monotone and bounded. According to Lem-
ma 2 this sequence is fundamental. On account of the completeness of A there
exists

y = lim x, (10)
Since A is Archimedean, we have from (9), (10)
y= ’l‘l_lg Y (109

But X, Y are closed sets, hence on the basis of (8), (10), (10") wegetye XnY
contrary to the disjointness of X, Y.
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2. Let (A, +, ., <) be an Archimedean field which is not complete. Then A
is not continuously ordered ([2], p. 95). Therefore there is such a non-empty set
M c A which is bounded from above and has not the least upper bound in A.

Denote by X the set of all upper bounds of M and put Y= A — X. Then X+#0
and since M# @, we have Y+, too.

We shall prove that each of the sets X, Y is open in the space (A, T).

Let x € X. Then x is an upper bound for M and since M has not the least upper
bound, there exists such an a € A that a € X, a <x. But then we have

xe(a,x+1.)cX

and hence x is an interior point of X. Therefore X is an open set.
Let ye Y. According to the definition of Y there exists such an x,€ M that
y < xo. But then we have

yE(y—lA, xO)C Y,

hence y is an interior point of Y and so Y is an open set This ends the proof.

In the formulation of Theorems 1 and 2 there were situated such properties of
Archimedean fields that had been equivalent to the completeness of A and had
been formulated using subsets of A. The further properties that will be introduced
in the following two theorems, will be equivalent to the completeness of A and they
will be formulated using the functions of the type f: B— A, where Bc A.

Let f: B> A, Bc A, where (A, +, ., <) is an ordered field. The function f
is said to be continuous at x € B if for every sequence {x,}.-: of elements from B
which converges to x we have f(x,)— f(x) (i.e. the sequence {f(x,)}~-1 converges
to f(x)). The function f: B— A is said to be continuous on B if it is continuous at
every point x € B. ‘

The function f: B— A is said to be uniformly continuous on B if for each
£>04 there is a >0, such that |f(x)—f(y)|<e holds for all x, ye B with
|x —y]<é.

Theorem 3. An Archimedean field (A, +,., <) is complete if and only if
for two arbitrary elements a, be A, a<b the following assertion holds: Every
function f: [a, b]—> A which is continuous on [a, b] is uniformly continuous on
[a, b].

Proof. 1. Let the Archimedean field (A, +,., <) be complete. Let
a,be A, a<B. Let us assume that there is such a function f:[a, b]>A
continuous on [a, b] that f is not uniformly continuous on [a, b]. Then there exists
such an &,>0, that for each 6 =1/k (k=1, 2, ...) there exist points xi, yx € [a, b]
with

1
o= wl<z, (1)

|f(x) = f(ye)| Z €0 (11"
303



The interval [a, b] is a closed and bounded subset of A and therefore it is
a compact set (see Lemma 2). Hence there exists such a subsequence {x,, }r-: of
{x« } =1 which converges to an element x, € [a, b]. It follows from (11) that y,, — x,.
In view of continuity of f we have

1) = fOm)l =00 (k—>).

and simultaneously on account of (11’) we have

If(xnk)—f(ym()'éfo (k=1,2"--)'
This is a contradiction.

2. Let the Archimedean field (A, +, ., <) be not complete. Then the set A
is not continuously ordered. Therefore there is such a set H¥0, Hc A, that is
bounded from above but H has not the least upper bound in A.

Choose a, b € A in such a way that a is not any upper bound for H and b is an
upper bound for H. Define a function f:[a, b]—> A in the following way: If
x € [a, b] and there exists a point y € [a, b]nH with x <y, then we put f(x)=04,.
In the countrary case we put f(x)=1a4.

We shall show that f is a continuous function on [a, b].

Let z€[a, b], f(z)=04. Let

Xk—>2Z, ka[a, b] (k=1, 2,) (12)

Since f(z) =04, there exists y € [a, b]nH such that z <y. It follows from (12) that
for all sufficiently large k (for k > ko) we have x, < y. Therefore f(x«) =04 for each
k> ko and hence f(x)— f(z).

Let v €[a, b], f(v)=14. Then v ¢ H and there isno y €[a, b]nH with y Zv.
Therefore for each y €[a, b]nH we have y <v. Since H has not the least upper
bound, there exists v’ <v such that v’ is an upper bound for H. Let xi — v. Then
for all sufficiently large k (for k > k,) we have v’ <x, and therefore f(x.) =14 (for
each k>k,). Hence f(x)— f(v).

Thus f is a continuous function on [a, b]. We shall prove that the function f is
not uniformly continuous on [a, b].

Consider that f(a)=0. and f(b)=1a. If f((a+b)/2)=04, then we put
xi=(a+b)/2, yy=b. If f((a+b)/2)=14, then we put x,=a, y1=(a+b)/2. In
both cases we have y, —x,=(b — a)/2. In such a way (by induction) we construct
two sequences of elements of A

x,§x2§...§xk§...

: yléyzééyké
such that

yk—Xk=y|2—:_1x‘l'—‘>0A (k—"°°), (13)
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further f(x.)=0a, f(y)=1a (k=1,2, ...).

Let 6>04. Then for suitable m on account of (13) we have |x,, — ym| <6 and
simultaneously for this m we have

[f(xn) = f(ym)| =14 >04.

Thus the function f is not uniformly continuous on [a, b]. This ends the proof.

Definition 2. Let (A, +,., <) be an ordered,field. A function f: A— A is
said to have the Darboux property if from the condition f(x,) <z <f(x.) (x:, x5,
z€ A) the existence of such an x € A follows that x belongs to the open interval
with the endpoints x,, x, and f(x)=z.

Theorem 4. An Archimedean ordered field (A, +, ., <) is complete if and
only if every function f: A— A which is continuous on A, has the Darboux
property.

Proof. 1. Let the Archimedean field (A, +, ., <) be complete. Then the set
(A, <) is continously ordered. Let f: A— A be a continuous function on A and
let

fx)<z<f(xz),

where x,, x,, z€ A. Let e.g. x, <x,. Put

H={x€[x, x;]; f(x)<z}

Then H# @ for x, € H. Further the set H is bounded from above (by the element
x2). Therefore there exists t=sup H e (x,, x). We shall prove that f(t)=z.

If f(t) <z, then in view of continuity of f at ¢ we see that there exists such an
interval (c, d) containing ¢ that for each x€(c, d) we have f(x)<z. But this
contradicts the definition of the point .

It follows from the continuity of the function f and the definition of ¢ that
f(t)=z. Thus we have f(t) = z. Hence the function f has the Darboux property.

2. Let the Archimedean field (A, +, ., <) be not complete. Then the set:
(A, <) is not continuously ordered. Therefore there is such a non-empty set
B, Bc A, which is bounded from above and has not the least upper bound in A.
Choose a € A and b € A such that a is not any upper bound for B and b is an upper
bound for B. Then a <b. Define f: [a, b]— A in the same way as in the proof of
Theorem 3. Then as we have seen f is a continuous function on [a, b] and
f(a)=04, f(b)=14. Choose in the definition of the Darboux property (see
Definition 2) z=1/2. Then f(a)<1/2<f(b), but there is no x €(a, b) with
f(x)=1/2 because the values of the function f are only 04 and 14. The proof is
finished.

305



REFERENCES

71] Bell, H. E.: Proof of a fundamental theorem on sequences. Amer. Math. Monthly 71 (1974),
665—666.

[2] Cohen, L. W.—Ehrlich, G.: The Structure of the Real Number System. D. van Nostrand Comp.
INC., Toronto—New York—London, 1963.

[3] Hewitt, E—Stromberg, K.: Real and Abstract Analysis. Springer-Verlag, Berlin—Heidelb-
erg—New York, 1969.

Author’s address: ' Received: 17. 6. 1981
Tibor Salét

Katedra algebry a teérie &isel MFF UK

Mlynské dolina

842 15 Bratislava

Anna Tarabovd

Gymnézium Kezmarok, Hviezdoslavova 20
060 01 KeZmarok

SUHRN

O VLASTNOSTIACH ARCHIMEDOVSKY USPORIADANYCH POLI,
KTORE SU EKVIVALENTNE UPLNOSTI

Tibor $alit, Anna Tarabovi, Bratislava
V préci su sformulované $tyri vlastnosti archimedovsky usporiadanych poli, ktoré si ekvivalentné

uplnosti pola. Dve z nich si formulované pomocou podmnoZin pola A, ostatné pomocou vlastnosti
funkcii typu f: B> A, Bc A.

O CBOWCTBAX APXMMEOBBIX IMOJIEM KOTOPBHIE 3KBHBAJIEHTHBI ITOJIHOTE
Tu6op Illanar, Auna Tapa6oBa, Bpatucnasa

B paGote copMyTHpOBaHbI YETBIPE CBOACTBA apXMMEOBLIX MOJIEH KOTOPHIE 3KBMBAJIEHTHBI

nonHote noned. [IBa U3 HUX CHOPMYIHPOBaHbI MPH MOMOLUM MOJIMHOXECTB MONS A, OCTalbHbIE
Hcnonb3ys pyHkumii THna f: B—»> A, Bc A.
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