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Expository papers

Regular polyhedra-old and new

BrANKO GRUNBAUM

Abstract. Although it is customary to define polygons as certain families of edges, when. considering
polyhedra it is usual to view polygons as 2-dimensional pieces of the plane. If this rather illogical point
of view is replaced by consistently understanding polygons as 1-dimensional complexes, the theory of
polyhedra becomes richer and more satisfactory. Even with the strictest definition of regularity this
approach leads to 17 individual regular polyhedra in the Euclidean 3-space and 12 infinite families of
such polyhedra, besides the traditional ones (which consist of 5 Platonic polyhedra, 4 Kepler-Poinsot
polyhedra, 3 planar tessellations and 3 Petrie-Coxeter polyhedra). Among the many still open
problems that naturally arise from the new point of view, the most obvious one is the question whether
the regular polyhedra found in the paper are the only ones possible in the Euclidean 3-space.

1. Introduction

Regular polyhedra have been investigated since antiquity. With the passage of
time there have been many changes in points of view about them, and even in the
definitions of the notions of polyhedra and of regularity. No formal consensus
appears to have been reached so far, and virtually every condition that is imposed
in some definition proposed in the literature is omitted or even contradicted in
another - equally reasonable — definition. While the effects of the differences in
definitions are rather superficial in respect to convex polyhedra, they have
far-reaching consequences as soon as non-convex polyhedra are considered.

The present paper grew out of an attempt to provide definitions which would
be natural, simple and elegant, while at the same time allowing interactions with
classical geometry as well as with novel directions of research. Though all the
ideas involved have appeared in the writings of various authors, it was the reading
of Coxeter’s beautiful “Regular Complex Polytopes” (Coxeter [1974]) that helped
bring into coherent focus the relevant investigations that occupied me during the
past year or so.
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The main aim of the following pages is the presentation of a new list,
conjectured to be complete, of regular polyhedra in Euclidean 3-space E’
(Section 3). Many of the extensions possible in different directions are briefly
touched upon in the last Section, which also contains historical remarks and
references. As a prerequisite for the main topic we discuss regular polygons in
Section 2. 7

It is well known that the “traditional” regular polyhedra appear naturally in
many contexts that have no apparent relation to regularity (see, for example,
Fejes T6th [1964]). Hence it is not surprising that many of the “new” regular
polyhedra (or their 1-skeleta) have been found to possess remarkable properties
even before they were recognized as ‘“‘regular polyhedra.” We shall enlarge on
this aspect in Section 4.

Many helpful suggestions of a referee are gratefully acknowledged.

2. Regular polygons

Following Poinsot [1810] we shall define a finite polygon (or n-gon) P=
[Vi, V..., V,] in a Euclidean space E* as the figure formed by the distinct
points (vertices) Vi,..., V, of E*, together with the segments (edges) [ V;V;.,] for
i=1,2,...,n—1,and [V,, Vi]. An infinite polygon P=[..., V_;, Vo, V1, V5, ...]
consists of a sequence of distinct points (vertices) V;, and of segments (edges)
[V, Vis1], i=0,%1,+2,..., such that each compact subset of E* meets only
finitely many edges. Each edge is said to be incident with each of the two vertices
that are its endpoints. If P is a polygon, a flag of P is a pair consisting of a vertex
of P and an edge of P that is incident with that vertex.

A polygon P is said to be regular privided the group of its symmetries (that is,
of the isometric homeomorphisms of E* onto itself that map P onto itself) acts
transitively on the family of all flags of P.

A systematic discussion of regular polygons may be found in Chapter 1 of
Coxeter [1974]. In order to make the present paper selfcontained, and also
in order to introduce convenient notation, we shall briefly review the relevant
facts. ‘

It is useful to classify the regular polygons into seven groups. As the polygons
are rather well known we shall refrain from detailed descriptions, referring the
reader to Figures 1, 2, and 3 instead.

Group 1. Convex n-gon. Symbol {n}, defined for each n=3. (See Figure 1a.)

Group 2. Star n-gon of density d. Symbol {n/d}, defined whenever 1<d <n/2
with n and d coprime. (See Figure 1b.) (We could allow d=1 in the above
definition, obtaining {n}={n/1}.)
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(a) Convex polygons[n]

{512} {112} {r3) (8/3}
(b) Star polygons {n/d }

(c)Apeirogon {ou}

(d)Zigzags{aDu }

Figure 1

Group 3. Apeirogon. A single polygon, with symbol {=}. (See Figure 1c.)

Group 4. Zigzag with angle a. Symbol {=°}, defined for each a with 0<a <
m. (See Figure 1d.) Note that {} could be interpreted as {"}.

Group 5. Antiprismatic n-gon. Symbol {n*/d}, where n is even, 1=d<n/2, n
and d are coprime, and 0<a <(n—2d)n/n. (See Figure 2a.) The vertices of
{n®/d} may be obtained from those of {n} by alternately raising and lowering them
perpendicularly to the plane of {n}. When a tends to the upper bound, the
polygons {n®/d} tend to {n/d}.

Group 6. Prismatic n-gon. Symbol {2 - k*/d}, where n =2k is even, k and 2d
are coprime, 1=d<k/2, and 0<a <(k—2d)n/k. (See Figure 2b.) (The vertices
coincide with those of a right prism based on {k}.)

Group 7. Helical polygon. Symbol {=*f}, where 0<a<m, 0<B<m, a+B>
m. Vertices V}, j=0,+1,+2,... lie on the helix given parametrically by (a cos Bt,
a sin B¢, bt), where V; results for t =j, and « is the angle between successive edges.
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{4/} 6/1} {8/1}
(a) Antiprismatic polygons

{2.5%/2}

(b) Prismatic polygons

Figure 2

Note that if ab>0 we have a right helix, while ab <0 is a left helix. Hence each
{*P} comes in two enantiomorphic forms, left and right. See Figure 3.

Rather obviously, polygons in groups 1,2,3,4 are planar, those in groups
5,6,7 are skew. Polygons in groups 1,2,5, 6 are finite, the others infinite. It
should be noted that only for polygons in group 1 is a part of the plane naturally
associated with the polygon; for other types no such association is possible,
although in some cases parts of certain 2-dimensional manifolds may be as-
sociated with the polygon. We shall discuss this in detail in Section 4.

3. Regular polyhedra

A polyhedron P is any family of polygons (called faces of P) that has the
following properties:

(i) Each edge of one of the faces is an edge of just one other face.

(ii) The family of polygons is connected; that is, for any two edges E and E’ of
P there exists a chain E = Ey, Py, E1, P,, Ea, ..., P, E.=E' of edges and faces
of P, where each P, is incident with E;_; and with E;

(iii) Each compact set meets only finitely many faces.
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Figure 3
Helical polygons.

A polyhedron is said to be incident with each of its faces, as well as with each
edge and each vertex of each of its faces.

A flag of a polyhedron P is any triple consisting of a vertex, an edge, and a
face of P, all mutually incident. The polyhedron P is regular if its group of
symmetries acts transitively on the family of its flags.

Let P be a polyhedron, V one of its vertices, and [V, V], i=1,2,...,k all
the edges of P incident with V. The vertex figure P/V of P at V consists of the
points Vi, i=1,2,..., k as vertices, and of those segments [V, V;] as edges for
which [V, V;] and [V, V;] are edges of P incident with one of the faces of P.
Therefore the vertex figure of P at V consists of one or more polygons. For a
regular polyhedron P the vertex figure P/V is clearly independent of the vertex V.
For each regular polyhedron in E* known to us, the vertex figure happens to be a
single polygon which is, naturally, regular (see also Remark (7) below).

Following the convenient custom introduced by Schlifli and elaborated in
particular by Coxeter, we shall assign to each type of regular polyhedra in E> a
Schldfli symbol {A, B}, where {A} is the symbol for the regular polygons that are
faces of P, while {B} is the symbol for the vertex figures of the polyhedron P.
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In the description of many of the “new” regular polyhedra we find it useful to
consider the so-called Petrie polygons (see, for example, Coxeter [1973, p. 24]).
For a polyhedron P, a Petrie polygon [] of P is a polygon with vertices among the
vertices of P, and edges chosen among the edges of P so that each two successive
edges of [[ are incident with one face of P, but no three successive edges of [] are
incident with the same face of P. It is easy to see that for each regular polyhedron
P the family of all Petrie polygons of P is a regular polyhedron w(P), the Petrie
polyhedron of P. Moreover, 7 (mw(P)) coincides with P.

We find it convenient to group the regular polyhedra possible in Euclidean
3-space E’ into 8 classes, of which the first four are well known.

Class 1. Platonic polyhedra are the 5 finite regular polyhedra in which faces as
well as vertex figures are convex polygons. It is well known that the Platonic
polyhedra are:

{3,3} tetrahedron;

{3,4} octahedron;

{4,3} hexahedron, or cube;

{3,5} icosahedron;

{5,3} dodecahedron.

They are illustrated in Figure 4.

Class 2. Planar tessellations are the infinite regular polyhedra in which faces as
well as vertex figures are convex polygons. The three planar tessellations are
{4, 4}, {3, 6}, and {6, 3}; they are shown in Figure 5.

Class 3. The Kepler—Poinsot polyhedra are the finite regular polyhedra in
which the faces are convex polygons and the vertex figures star polygons, or the

A

(33) (34} {43)
NN T
i
D &
(35 (s3]

Figure 4
Platonic polyhedra.
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{44} {36} {63}

Figure 5
Planar tessellations.

other way around. The four Kepler-Poinsot polyhedra are:
{5,5/2} great dodecahedron;
{3,5/2} great icosahedron;
{5/2,5} small stellated dodecahedron;
{5/2,3} great stellated dodecahedron.

They are illustrated in Figure 6.

Class 4. The Petrie—Coxeter polyhedra are the infinite regular polyhedra with
convex polygons as faces, and antiprismatic polygons as vertex figures. The three

{5725} {512,3)

Figure 6
The Kepler-Poinsot polyhedra.
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V | !
-4 il —
-4l <
{4,671
{64911} {6,671}
Figure 7

Fragments of the Petrie-Coxeter polyhedra.

Petrie-Coxeter polyhedra are {4, 6™3/1}, {6,4°7/1} (where a*=arccos
2/3 =48°12"), and {6,6"/1} (where a**=arccos 5/6 =33°33'); they are illus-
trated in Figure 7.

Class 5. Finite regular polyhedra with finite skew polygons as faces. There are
nine polyhedra in this class; they are listed and described in Table 1, and
illustrated in part in Figure 8. The completeness of the list may be established by
exhaustive checking, since the vertices of each finite regular polyhedron must
coincide with those of a Platonic polyhedron. Each polyhedron {n®/d, q} of class 5
is the Petrie polyhedron of a Platonic or Kepler-Poinsot polyhedron {p, q}, where
a=(p—2)m/p and cos? (w/p)+cos’ (m/q) = cos’ (w/h), with h =n/d.

Table 1
The nine regular polyhedra of class 5.
Schlafli Number of Relation to other
symbol vertices edges polygons regular polyhedra
{47311, 3} 4 6 3 m{3,3}
{6™/1, 4} 6 12 4 w{3, 4}
{6™*11, 3} 8 12 4 {4, 3}
{10™*/1, 5} 12 30 6 {3, 5}
{6™°/1, 5} 12 30 10 m{5/2, 5}
6>°11,5/2} 12 30 10 {5, 5/2}
{10™%3,5/2} 12 30 6 n{3,5/2}
{10°*5/1,3} 20 30 6 {5, 3}
{10™3/3, 3} 20 30 6 m{5/2, 3}
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(6714}

Figure 8
Finite regular polyhedra with finite skew polygons.

Class 6. Infinite regular polyhedra with finite skew polygons as faces. Three
infinite families of such polyhedra are known, and also three polyhedra not in
those families (see Table 2; compare also remark (3) below). The three infinite
families are related to the planar tessellations.

{4°/1, 4} for 0<a < /2 is obtained on deforming the squares of {4, 4} into
skew polygons {4%/1} by perpendicularly lifting alternate vertices of {4, 4} to equal
heights above the plane of {4,4}. For a— /2 the polyhedra tend to {4, 4}.

{6°/1, 3} for 0<a <2u/3 is similarly obtained by deforming the hexagons of
{6, 3} into skew hexagons {6/1}; for a —2u/3 the polyhedra tend to {6, 3}.

{2.3%/1, 6} for 0<a < /3 is obtained from two parallel copies of {3, 6}, one
above the other, on replacing pairs of triangles by skew hexagons {2.3%/1} having
the same vertices. For a — m/3 the polyhedra tend to the doubly covered {3, 6}.

The remaining three polyhedra known in class 6 are {6™°/1, 6}, {4™/1, 6} and
{6™%/1,4}. The first consists of the vertex figures of alternate vertices of the
Petrie-Coxeter polyhedron {4, 6™%/1}; the second is the Petrie polyhedron of the
first, and may alternatively be described as formed by one skew quadrangle
{4™3/1} inscribed into each of three-fourths of the cubes of the tessellation
{4, 3, 4}. The third may be obtained by taking one Petrie polygon in each of one
half of the cubes that form the tessellation {4, 3, 4} (see Figure 9); it is self-Petrie
in the sense that its Petrie polyhedron is again {6™?/1, 4}.



10 B. GRUNBAUM AEQ. MATH.

Class 7. Regular polyhedra with zigzag polygons. This class is known to
contain six infinite families of polyhedra. The first three families are clearly
related to the plane tessellations.

{0, 4}, for 0< a < /2, is w{4/1, 4} unless a = 7/2, in which case it is 7{4, 4}.

{3}, for 0<a=2m/3, is w{6%/1,3} unless a=27/3, in which case it is
{6, 3}.

{=*, 6}, for 0<a=m/3, is 7{2.3%/1,6} unless a =/3, in which case it is
{3, 6}.

The members of the other three families are Petrie polyhedra of regular
polyhedra of class 8; in contrast to the ones just described, they are not contained
in any slab of finite width.

{oo*® 42"®)1}, where a(b)=arccos —b%/(b*+1),
a*(b) = arccos 2b%/(2b*+1), b#0, is ﬁ{w“(b)’"lz, 4"®1},
{¥® 6" ®/1}, where 7y(b)=arccos (1— 2b%)/(2+2b%),
v*(b) = arccos (8b>—1)/(8b>+2), b#0, is m{e"®?", 67" */1}.
{=*®,2.32"®/1}, where 8(b)=arccos —(1+2b%)/(2+2b?),
5*(b) = arccos (8b%+3)/(8b>+6), b#0, is w{=>®*™,2.3%"®)/1}.

Table 2
Regular polyhedra of class 6.

Relation to other

Schlafli symbol Description regular polyhedra
{4*/1,4} for O0<a<m/2 Deformation {eo”, 4}
of {4, 4}
{6%/1,3} for 0<a<2a/3 Deformation m{=®, 3}
of {6, 3}
{2.3%/1,6} for 0<a<m/3 Obtainable m{x®, 6}
from {3, 6}
{6711, 6} . One-half of {41, 6}
the vertex
figures of
{4,6™1}
{411, 6} One quadrangle m{6™>/1, 6}
{4™3/1} in

each of 3/4 of

the cubes of

4,3, 4}
{6™/1, 4}
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Figure 9

A fragment of the regular polyhedron {6™ 2/1, 4}. Each of the numerals 1, 2, 3, 4, indicates the edges
of one of the hexagons {6™2/1}.

In particular, if b=1/y2 then y(b)=m/2 and v*(b) = m/3; the edges of the
resulting polyhedron {=™?,6™/1} coincide with those of the Petrie-Coxeter
polyhedron {4,6™3/1} (or of the cubic lattice). The polyhedron is illustrated in
Figure 10.

Class 8. Regular polyhedra with helical polygons. Five such polyhedra are
known, besides three infinite families.

In {*™*™2 3} the helices follow, in each direction, one quarter of the stacks
of cubes in the cubic tessellation {4, 3, 4}; see Figure 11.

{w21r/3,21r/3’ 3} IS w{w27r/3,‘rr/2’ 3}.

Each of those two types exists in two enantiomorphic forms, using only left or
only right helices.

{oo-nlz,z-rr/:!’ 617/3/1} iS 11'{4, 6"/3/1}.
{o?™3273 47311} is  w{6,4%"/1} where a*=arccos 2/3=48°12".
{®™72 627711} is  {6,6/1}, where a**=arccos5/6=33°33".

The three infinite families consist of helical polygons ‘‘rising” above the
polygons in planar tessellations. To simplify the notation, in the helical polygons
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Regular polyhedra of class 7.

B. GRUNBAUM

AEQ. MATH.

Relation to other

Schléfli symbol Description regular polyhedra

{=*,4} for 0<a=mu/2 Deformation of w{4%/1,4} for O0<a<m/2
zigzags in the w{4,4} for a=m/2
1-skeleton of
{4,4}

{*,3} for O0<a=2w/3 Deformation of w{6°/1,3} for 0<a<2m/3

{=*,6} for 0<a=m/3

{==®, 4271}, b#0
{wv(b)‘ 6" (l:)/l}, b#0
{=°®,2.3°®1},  b#0

zigzags in the
1-skeleton of
{6,3}
Deformation of
zigzags in the
1-skeleton of
{3,6}

16,3} for a=2m/3

7{2.3%/1,6} for 0<a<mu/3
w{3,6} for a=mu/3

_’T{ma(b).‘n/Z, 4a‘(b)/ 1}
,n.{wv(b),z'n/:i’ 67‘(b)/1}

77{0&5(b)’"/3, 2.35'(b)/1}

For the definition of the functions a(b), a*(b), etc. see the text.

/2

p
5 7
6 2
58 T 3
9 7
0
7 18 06
75 ) 03
N 19 W A 6
7 7
5 o 57 [
g 7
3 3
Figure 10

A fragment of the regular polyhedron {«™?, 6™/1}. Edges belonging to the polygons incident with at
least one of the two emphasized vertices are indicated by numerals from 0 to 9. Polygon #1 is
indicated by heavy edges.
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Table 4
Regular polyhedra of class 8.

Relation to other

Schléfli symbol regular polyhedra
{mlw/3,1r/2’ 3} ,n_{w21r/3,211'13’ 3}
2m/3,2m/3 2m/3,m/2
{eo »3 r{eo ,3}
{w‘ll’/2,21l‘/3, 6‘"/3/1} ’”{4, 671-/3/1}
{w21r/3.21rl3’ 4«/3/1} 71'{6, 4a:£1}
{222 61} m{6,6°"/1}
{w=®m2, 4°®)1) p#0 r{eo™®, 4=7®)1}
{wv(b),l-rr/f*, 6'v'(b)/1}’ b#0 »n-{oo"'(")’ 67'(5)/1}
{2173, 2.35°®1},  b#0 m{et®,2.35°®)1}

For the definitions of a*, a**, a(b), etc. see the text.

used we have assumed that a =1/y2 in the first family, a =1/4/3 in the second,
and a =1 in the third, while b# 0 is freely variable. The three families are:

foo @2 4=*®)1} - where a(b)=arccos —b2/(b*+1)
and a*(b)=arccos 2b*/(2b>+1).
{o?®:273 6V ®)1} where y(b)=arccos (1- 2b%)/(2+2b?),
and y*(b)=arccos (8b>—1)/(8b%+2).
{®®713 2 39*®)1}  where 8(b) = arccos —(1+2b%)/(2+2b?)
and 8*(b)=arccos (8b”+3)/(8b+6).

It should be noted that the polyhedron obtained in the second of those families
for b=1/J2 (so that vy(b)=m/2, y*(b)=m/3), which we could denote
{02273 6™3/1}* is distinct from the polyhedron with the same Schléfli symbol
mentioned earlier. One is 7{©™?, 6™/1}, while the other is w{4,6™>/1}. This
phenomenon is possible because of the existence of enantiomorphic forms of the
helical polygons {=™**™}. In {4, 6™>/1} two polygons have at most one edge in
common, while in w{™? 6™>/1} polygons with a common edge have infinitely
many common edges.

This completes the list of the regular polyhedra in Euclidean 3-space known at
the present. It may be conjectured that the list is final, and that no other such
polyhedra exist.

4. Remarks

(1) The regular polygons (in Euclidean 3-space) - finite and infinite, planar and
skew — were explicitly considered by Coxeter [1937], although attention was
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b
37 26 357 26
b
4.8 15 48 15
a a a
a a a
b
a a a
15 48 15 48
b
26 37 26 37
b
37 26 37 26
b
438 15 LX:] 15
b
15 48 15 48
b
26 37 26 37
b
Figure 11

An orthogonal projection of a fragment of the regular polyhedron {=>™3™2 3}, Two turns of vertical

helices are represented by the squares (the numerals indicating successive vertices on the helices, equal

numerals corresponding to the same height in all helices). Projections of edges of two horizontal

helices are indicated by heavy lines and marked a (passing through vertices marked 4 and 5) and b
(vertices 3 and 4).

restricted to simple ones. Finite, but not necessarily simple regular polygons in
Euclidean spaces of all dimensions were investigated by Efremovi¢-Ilyasenko
[1962]. A systematic treatment of the general case may be found in Coxeter
[1974]. Our presentation in Section 2 differs in some aspects of the notation from
Coxeter’s.

As pointed out by a referee, in order to facilitate the extension to higher
dimensions a good case could be made for the following changes in our notation:
Instead of {n®/d} for polygons in group 5 write {2 - n°/d}, just as in group 6. A
polygon {2 - n®/d} belongs to group 5 if n is even, to group 6 if n is odd; in either
case the number of its vertices is the least common multiple of 2 and n (hence it is
n in the former case, 2n in the latter), and in both cases the projections on the
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vertical line and horizontal plane are {2} and {n/d}, respectively. Thus the groups
5 and 6 are actually one group. Similarly — and motivated by a similar concern for
projections — a helical polygon {®*?} could be denoted by {k - »*}, where k=
2/B; for polygons in group 4 this would suggest the notation {2 - ©°}, since for
them B = and so k =2. However, since the real motivation and advantages of
this notation become apparent only in higher dimensions, and since in the case of
3-dimensional space there are also several reasons for preferring the notation we
used, the notation adopted has been retained.

It would appear to be of interest to investigate and completely classify some
types of polygons slightly less symmetric than the regular ones. For example, it
should be easy to determine all those for which the symmetries act transitively on
the vertices, or the ones for which the symmetries act transitively on the edges.

(2) It is rather strange that although the perception of polygons as piecewise
linear immersions of the 1-sphere goes back at least to Poinsot [1810] and is quite
generally accepted, in the definition of polyhedra practically all authors use — either
explicitly or implicity — polygons as pieces of the plane; see, for example, Briickner
[1900, p. 2], Fejes T6th [1965, pp. 101-102], Coxeter [1974, p. 12-13]. It is this
“horror vacui” that is probably responsible for the fact that even the regular
polyhedra in 3-space have not yet been completely investigated, and also for the
following phenomenon: In the publications that deal with regular (or otherwise
symmetric) polyhedra composed of skew regular polygons, the authors find it
necessary to “span” the skew polyhedra by ‘“membranes” that are chosen as
minimal surfaces, or put together from planar polygons or from pieces of
parabolic hyperboloids (see, for example, Burt [1966], Schoen [1968a], Williams
[1972]).

(3) Some of the “new” regular polyhedra of classes 5 and 6 (or objects related
to them) have been discussed to a certain extent earlier, at least with the
interpretation of ‘“‘skew polygon” as a part of some 2-manifold (see remark (2)
above). Though there probably exist other publications dealing with this topic,
those I am aware of are the following: Burt [1966] discusses (essentially) {4%/1, 4}
and {6%/1,3}; the same ‘“saddle tessellations” appear in Pearce [1966] and
Williams [1972]. Schoen [1968a] describes the three polyhedra of class 6,
together with three other polyhedra; I do not understand the construction of
those last three, but they seem not to be regular in our sense (lacking symmetries
which interchange the two vertices of an edge of a polygon). Schoen [1968b]
describes the nine members of class 5, and also {2.3%/1, 6}. For regular maps on
2-manifolds the notion analogous to that of ‘Petrie polyhedron” is well known;
see, for example, Coxeter-Moser [1972, p. 112].

(4) In the case of the ‘“traditional” regular polyhedra it is well known that
their 1-skeleta (that is, the one-dimensional complexes formed by their vertices
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and edges) are of interest in many other contexts. It appears that the situation is
somewhat analogous with respect to several of the “‘new” polyhedra. For exam-
ple, the 1-skeleton of the self-Petrie polyhedron {6™%/1, 4} is the “net” #4 in
Wells [1954b; Table 2 and Figure 6]; similarly, the 1-skeleton of {%, 4™3/1},
where a,=arccos (—1/3)=109°28'--- (as well as the 1-skeleton of its Petrie
polyhedron {=®™2 47°/1}) is the well known “diamond net” (see, for example,
net #1 in Wells [1954b; Table 2 and Figure 6]). The 1-skeleton of {0o*™>™2 3}
(and of its Petrie polyhedron {«®>™>*™* 3}) is the net #1 in Wells [1954a; Table 2
and Figure 6]. A more thorough review of the literature would surely reveal many
more extremal or otherwise remarkable properties of the ‘“new” regular
polyhedra and their 1-skeleta.

(5) The definition of regularity using flags appears to have been first proposed
by Du Val [1964, p. 63], and was adopted in Coxeter [1974]. In special instances
similar notions were used earlier in axiomatic geometry and in the study of finite
geometries. It appears to be, at the same time, elegant, usable, very restrictive,
and applicable in rather varied circumstances.

(6) One of the curious aspects of the way of looking at regular polyhedra
presented here is the following. In the “traditional” classes 1, 2, 3 (and, with some
effort, class 4) there is a rather natural pairing of mutually reciprocal (polar, dual)
polyhedra (with {3, 3}, {4, 4}, and {6,6""/1} each being selfreciprocal), but the
collections of Petrie polygons do not form any “traditionally acknowledged”
polyhedron. In the new interpretation, the Petrie paths form regular polyhedra in
each case, but no reasonable definition of “reciprocal pairs” has been found so
far.

(7) In most definitions of polyhedra, and of regular polyhedra, it is specifically
required that all faces incident with a vertex form one ‘“‘circuit” (i.e., that each
vertex figure be a single polygon). We have not found it necessary to impose this
condition since all the regular polyhedra found above satisfied it automatically. It
would be of interest to see whether it in general follows from the other
requirements of regularity (it probably is not a consequence of some of the
weaker conditions often used to define regularity).

(8) Quite a few other classes of more or less symmetrical polyhedra are
interesting and deserve a detailed investigation. For example, there exist non-
regular totally transitive polyhedra P such that all faces and vertex figures of P are
regular and the symmetries of P act transitively on its vertices, its edges, and its
faces. One such family are the ‘“cylindrical polyhedra” formed by suitable
polygons {4%/1} (see Figure 12); they were considered by Burt [1966]. Between
the totally transitive polyhedra and the polyhedra we call regular are those called
“regular” by many other authors; for them the symmetries are only assumed to
permute cyclically the vertices of each face, as well as the faces at each vertex. It
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seems that the three polyhedra described by Schoen [1968a] and mentioned
above in remark (3) are “regular” in this sense.

A larger class that appears to be important from various points of view are the
Archimedean polyhedra, which have regular polygons as faces, and symmetries
that act transitively on their vertices. Even the subclass consisting of those infinite
Archimedean polyhedra in which the faces are all of one convex type, has not
been completely investigated. Wachman, Burt and Kleinmann [1974] list many
infinite families as well as individual polyhedra; they found polyhedra of
the following types (denoting by n” any Archimedean polyhedron in
which all faces are {n}, with p faces meeting at each vertex): 3° 37,
3%,3%,3"9,3"2 4% 4% 4° 6%,6°. Some of those polyhedra appear also in
Wells [1969], and in Gott [1967]; the latter also describes a remarkable Archime-
dean polyhedron of type 5°, not mentioned in the literature before or after. The
most challenging open problem concerning Archimedean polyhedra of types n? is
the chasm between the experimental “fact” that there are no types besides those
just listed, and the absence of any theoretical explanation for that “fact.”

(9) The classification of regular polygons and polyhedra in other spaces

Figure 12
A fragment of a “cylindrical” polyhedron. (Adapted from Burt [1966].)
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(Euclidean spaces of higher dimensions, hyperbolic, spherical and elliptic spaces),
and in Euclidean (or other) spaces but with other groups allowed for symmetries
(affine, projective, topological homeomorphisms, combinatorial isomorphisms)
offer other fruitful directions of exploration. The first steps in some of those
directions have already been made. For example, Coxeter [1937] investigated
some of the regular “skew” polyhedra in higher-dimensional Euclidean spaces,
while McMullen [1967], [1968] considered convex polyhedra (and polytopes)
regular in the sense of affine, projective or combinatorial symmetries. The study
of “regular maps” on 2-manifolds is too well known to require detailed refer-
ences; see, for example, Coxeter—-Moser [1972], Ringel [1974].

As with convex polygons in the plane, in some circumstances it is possible — and
even desirable and useful — to associate with a finite polygon a 2-cell bounded by
the polygon; a polyhedron may then give rise to a map on a manifold. In its turn,
such a manifold may happen to divide a containing space in a suitable manner so
that it becomes meaningful to speak of its interior, etc. Although often very
convenient when naturally possible, the possibility of such “fleshing out” should
not be required in the definition of regularity, or even of “polyhedron.”

(10) There is no reason to stop at the stage of polyhedra the process of
investigating regular figures. Connected families of (regular) polyhedra, in which
each polygon is shared by two polyhedra and in which symmetries act transitively
on flags (each composed of a vertex, an edge, a polygon, and a polyhedron, all
mutually incident) could reasonably be called regular 3-topes. Similarly, regular
d-topes may be defined for all larger d. As in the case of polyhedra, regularity
may also be interpreted in non-metrical ways (combinatorial, topological, etc.).
One example in this direction is provided by the forthcoming paper of Coxeter—
Shephard [1977], in which (combinatorially) regular maps on the torus are used to
put together a regular 3-tope (which happens to be a 3-sphere if the tori are
interpreted as solid tori). Other such examples are given in Griinbaum [1977].

(11) The spirit of the present paper is probably best described by the desire to
rid the theory of regular polyhedra of the psychologically motivated crutch of
“membranes’ spanning the polygons used as building blocks. The plethora of
“new” regular polyhedra, and of naturally arising questions, would appear to lend
justification to this way of thinking about polyhedra. However, one more vestige
of the “‘anthropocentric” viewpoint still remains, and should - at least in some
investigations — be removed: Instead of taking an edge to be a segment of a straight
line, we could without any loss of precision (and with quite a gain in clarity in case
of star polygons, for example) define an edge as an unordered pair of points
(vertices). While this does not affect in any way the above considerations, it at
once leads to the rather obvious possibility of considering ‘3-point edges,”
“4-point edges,” etc., and using them to form “polygons,” “‘polyhedra,” etc. This
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generalization — which can be geared to a combinatorial, topological, or metric
point of view — brings within the scope of a unified theory many kinds of complexes
and other structures. One aspect of such objects is investigated in the theory of
“regular complex polytopes” initiated by Shephard [1952]; for a complete ac-
count see Coxeter [1974]. Other directions and points of view are considered in
Griinbaum [1975].
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